
1

Alex Buckley
Specification Lead,
 Java Language and VM
Sun Microsystems

TOWARDS A UNIVERSAL
VIRTUAL MACHINE

John Rose
Lead Engineer,
 Multi-Language Virtual Machine
Sun Microsystems

2

Overview

• The Java Virtual Machine (JVM) has, in large part,
been the engine behind the success of the Java
language

• In years to come, it will power the success of other
languages too

3

What is a virtual machine?

• A software implementation of a computer
architecture

• Some virtual machines simulate a whole machine
> VMWare, VirtualBox, VirtualPC, Parallels

• Some virtual machines host a single application
> Java Virtual Machine, .NET Common Language Runtime
> Usually implement a custom instruction set chosen to

suit general applications
> Application is isolated from the Operating System and

from applications in other virtual machines

4

5

“Java is slow because it runs on a VM”

• Early implementations
of the JVM executed
bytecode with an
interpreter [slow]

6

• Major breakthrough was
the advent of “Just In Time”
compilers [fast]
> Compile from bytecode to

machine code at runtime
> Optimize using information

available at runtime only

• Simplifies static compilers
> javac and ecj generate

“dumb” bytecode and trust
the JVM to optimize

> Optimization is real, even if it
is invisible

“Java is fast because it runs on a VM”

7

Common JVM optimizations
compiler tactics
 delayed compilation
 tiered compilation
 on-stack replacement
 delayed reoptimization
 program dependence graph representation
 static single assignment representation
proof-based techniques
 exact type inference
 memory value inference
 memory value tracking
 constant folding
 reassociation
 operator strength reduction
 null check elimination
 type test strength reduction
 type test elimination
 algebraic simplification
 common subexpression elimination
 integer range typing
flow-sensitive rewrites
 conditional constant propagation
 dominating test detection
 flow-carried type narrowing
 dead code elimination

language-specific techniques
 class hierarchy analysis
 devirtualization
 symbolic constant propagation
 autobox elimination
 escape analysis
 lock elision
 lock fusion
 de-reflection
speculative (profile-based) techniques
 optimistic nullness assertions
 optimistic type assertions
 optimistic type strengthening
 optimistic array length strengthening
 untaken branch pruning
 optimistic N-morphic inlining
 branch frequency prediction
 call frequency prediction
memory and placement transformation
 expression hoisting
 expression sinking
 redundant store elimination
 adjacent store fusion
 card-mark elimination
 merge-point splitting

loop transformations
 loop unrolling
 loop peeling
 safepoint elimination
 iteration range splitting
 range check elimination
 loop vectorization
global code shaping
 inlining (graph integration)
 global code motion
 heat-based code layout
 switch balancing
 throw inlining
control flow graph transformation
 local code scheduling
 local code bundling
 delay slot filling
 graph-coloring register allocation
 linear scan register allocation
 live range splitting
 copy coalescing
 constant splitting
 copy removal
 address mode matching
 instruction peepholing
 DFA-based code generator

8

Inlining is the Über-Optimization

• Speeding up method calls is the big win

• For a given method call, try to predict which method
should be called

• Numerous techniques available
> Devirtualization (prove there's one target method)
> Monomorphic inline caching
> Profile-driven inline caching

• Goal is inlining: copying method body into the caller
> Gives more code for the optimizer to chew on

9

Optimizations are universal

• Optimizations work on bytecode in .class files

• A compiler for any language – not just Java – can
produce a .class file

• All languages can benefit from dynamic compilation
and optimizations like inlining

10

The Great Ruby Shootout 2008

http://antoniocangiano.com/2008/12/09/the-great-ruby-shootout-december-
2008/

2.00
means
“twice
as fast”

0.50
means
“half
the
speed”

11

Languages ♥ Virtual Machines

• Programming languages need runtime support
> Memory management / Garbage collection
> Concurrency control
> Security
> Reflection / Debugging / Profiling
> Standard libraries (collections, database, XML)

• Traditionally, language implementers coded these
features themselves

• Today, many implementers choose to target a virtual
machine to reuse its infrastructure

12

Clojure

Tcl

JavaScript

v-language

CAL

Sather

Funnel

Mini
PLAN

Lisp

Scheme

Basic

Logo JHCR

TermWare

Drools

Prolog

LLP

JESS

Eiffel

Smalltalk

C#

G

Groovy

Nice

Anvil

Hojo

Correlate

Ada

Bex Script

Tea

PHP

Phobos Sleep

FScript

JudoScript

JRuby

ObjectScript

Jickle

Yoix

Simkin

BeanShell

DawnWebL

iScript

Jython

Pnuts

Yassl

Forth

Piccola
SALSA

Processing

Zigzag

Tiger

Tiger

Icon
Pascal

Oberon

Modula-2

Luck

E

Rexx JavaFX Script
Scala

Languages ♥ The JVM

13

Benefits for the developer

• Choice
> Use the right tool for the right job, while sharing

infrastructure
> Unit tests in Scala, business logic in Java, web app in

JRuby, config scripts in Jython...
> …with the same IDE, same debugger, same JVM

• Extensibility
> Extend a Java application with a Groovy plugin

• Manageability
> Run RubyOnRails with JRuby on a managed JVM

14

Trends in programming languages

Data courtesy of TIOBE: www.tiobe.com

15

Is the JVM a
Universal VM?

16

Different kinds of languages

Data courtesy of TIOBE: www.tiobe.com

17

Fibonacci in Java and Ruby

int fib(int n) {

 if (n<2)

 return n;

 else

 return fib(n-1)+fib(n-2);

}

def fib(n) {

 if n<2

 n

 else

 fib(n-1)+fib(n-2)

 end

}

18

Not as similar as they look

• Data types
> Not just char/int/long/double and java.lang.Object

• Collections
> Not just java.util.*

• Method call
> Not just Java-style overloading and overriding

• Control structures
> Not just 'for', 'while', and 'break'

19

Primitive types+ops
Object model
Memory model
Dynamic linking
Access control
GC
Unicode

Checked exceptions
Generics
Enums
Overloading
Constructor chaining
Program analysis
Primitive types+ops
Object model
Memory model
Dynamic linking
Access control
GC
Unicode

Java language
fictions

Java VM
features

Open classes
Dynamic typing
'eval'
Closures
Mixins
Regular expressions
Primitive types+ops
Object model
Memory model
Dynamic linking
Access control
GC
Unicode

Ruby language
fictions

20

Towards a Universal VM

• Simulating language features at runtime is slow

• When multiple languages target a VM, common
issues quickly become apparent
> JVM Language Summits in 2008 and 2009

• With expertise and taste, the JVM's features can
grow to benefit all languages
> Adding a little more gains us a lot!
> Each additional “stretch” helps many more languages

21

If we could make one change
to the JVM to improve life for
dynamic languages, what
would it be?

More flexible method calls

22

More flexible method calls

• The invokevirtual bytecode performs a method call

• Its behavior is Java-like and fixed

• Other languages need custom behavior

• Idea: Let some “language logic” determine the
behavior of a JVM method call

• Invention: the invokedynamic bytecode
> VM asks some “language logic” how to call a method
> Language logic decides if it needs to stay in the loop

23

Caller Method
invokevirtua

24

Caller Method

Language logic

invokedynami invokevirtua

25

Caller Method

Language logic

invokedynami invokevirtua

• Check which methods are available now in each class [open classes]

• Check the dynamic types of arguments to the method [multimethods]

• Rearrange and inject arguments [optional and default parameters]

• Convert numbers to a different representation [fixnums]

26

JRuby caller

Method

JRuby logic
invokedynami

invokevirtua

Jython logic

Groovy logic
Jython caller

Groovy caller

27

Language logic is only needed...

ONCE
(Until a different object is assigned to the receiver variable,

or the receiver's dynamic type is changed,

or the arguments' dynamic types are changed)

28

Bootstrap methods

• The first time the JVM executes
 invokedynamic Object.lessThan(Object)boolean

It consults a bootstrap method in the language logic to discover
which method should be called

• Suppose the answer is “Integer.compare(Long)BOOL”

The JVM associates that method with the invokedynamic instruction

• The next time the JVM executes
 invokedynamic Object.lessThan(Object)boolean

It jumps to the previously chosen method immediately

• No language logic is involved

• Now the JVM knows the target method, it can start inlining!

29

Method

invokevirtua

invokevirtua

invokevirtua

It's as if invokedynamic never existed...

JRuby caller

Jython caller

Groovy caller

30

We're basically a direct
participant in the JVM's method
selection and linking process.
So cool.

Charles O. Nutter, JRuby lead

31

JVM Specification, 1997
The Java Virtual Machine knows nothing about the Java programming
language, only of a particular binary format, the class file format.

A class file contains Java Virtual Machine instructions (or bytecodes) and
a symbol table, as well as other ancillary information.

Any language with functionality that can be expressed in terms of a valid
class file can be hosted by the Java virtual machine.

Attracted by a generally available, machine-independent platform,
implementors of other languages are turning to the Java Virtual Machine
as a delivery vehicle for their languages.

In the future, we will consider bounded extensions to the Java
Virtual Machine to provide better support for other languages.

32

A budget of invokes

invokestatic invokespecia
l invokevirtual invokeinterface invokedynamic

no receiver
receiver

class
receiver

class
receiver
interface

no receiver

no dispatch no dispatch single dispatch single dispatch custom dispatch

B8 nn nn B7 nn nn B6 nn nn B9 nn nn aa 00 BA nn nn 00 00

33

Optimizing invokedynamic

• Don't want it to be slow for the first 10 years

• Most of the current optimization framework applies!

• Every invokedynamic links to one target method so
inlining is possible

• Complex language logic can also be inlined

• A JVM implementation can even assist with
speculative optimizations that are language-specific

34

JSR 292

• invokedynamic

• Interface injection

• Tail calls

• Continuations

• Hotswap

35

A Universal VM is in sight

• Where all languages run faster
> Less overhead for their implementers
> Direct application of existing JVM optimizations
> Exploit the centuries of programmer effort invested in

JVM implementations to make their bytecodes zoom!

• Where all languages are first-class citizens
> Larger community working to improve the JVM
> Virtuous circle of ideas and prototypes

36

What about Java (the language) ?

• Java depends on static types for method calls

• Code in dynamic languages has no static types

• How can Java code access libraries written in
dynamic languages without losing type safety?
> “Punch a hole” in the Java type system?
> All access through privileged libraries?
> Many details to consider, such as checked exceptions

• We are moving cautiously
> Java Language Rule #0: “First, do no harm”

37

Innovation never stops

• CMT machines are here, but the software isn't

• Cheap CPU cycles make scripting practical

• New languages and APIs will continue to appear

• The JVM will continue to play a central role

38

Resources

• John Rose (JSR 292 spec lead)
> http://blogs.sun.com/jrose

• Multi-Language Virtual Machine OpenJDK project
> http://openjdk.java.net/projects/mlvm

• JVM Language Summit, September 2009
> http://www.jvmlangsummit.com

• “JVM Languages” Google Group
> http://groups.google.com/group/jvm-languages

39

THANK YOU

Alex Buckley
alex.buckley@sun.com

John Rose
john.rose@sun.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

