EscapeAnalysis

Escape Analysis

From: Vladimir Kozlov
Date: May 15, 2009 1:47:21 PM PDT

_C2 implements the flow-insensitive escape analysis algorithm described in:

[Choi 99] Jong- Deok Shoi, Manish Gupta, Mauricio Seffano,
Vugranam C. Sreedhar, Sam M dki ff,
"Escape Analysis for Java", Procedi ngs of ACM S| GPLAN
OOPSLA Conference, Novenber 1, 1999

The analysis requires construction of a "connection graph" (CG) for the method being analyzed. The nodes of the connection graph are:
- Java objects (JO

- Local variables (LV)
- Fields of an object (OF), these also include array el enents

C2 does not have local variables. However for the purposes of constructing the connection graph, the following IR nodes are treated as local variables:

Phi (poi nter val ues)
LoadP, LoadN
Proj #5 (value returned fromcall nodes including allocations)

CheckCast PP, Cast PP, EncodeP, DecodeN
Return (4 obal Escape)

The LoadP, Proj and CheckCastPP behave like variables assigned to only once. Only a Phi can have multiple assignments. Each input to a Phi is treated
as an assignment to it.

The following node types are JavaObject:

top()

All ocate

Al | ocat eArray

Par m (for incomng object argunents, d obal Escape)
Cast X2P ("unsafe" operations, G obal Escape)

Cr eat eEx (d obal Escape)

ConP, ConN (d obal Escape except for null)

LoadKl ass, LoadNKl ass (d obal Escape)

Thr eadLocal (ArgEscape)

AddP nodes are fields.

After building the graph, a pass is made over the nodes, deleting deferred nodes and copying the edges from the target of the deferred edge to the source.
This results in a graph with no deferred edges, only:

LV -P> JO
OF -P> JO (the object whose oop is stored in the field)
JO -F> OF

After that escape analysis makes a pass over the nodes and determines nodes escape state:

® GlobalEscape - An object escapes the method and thread (stored into a static field or stored into a field of an escaped object or returned as the
result of the current method).

® ArgEscape - An object passed as argument or referenced by argument but not globally escape during a call (by analyzing the bytecode of called
method).
®* NoEscape - A scalar replaceable object.

After escape analysis C2 eliminates scalar replaceable object allocations and associated locks. C2 also eliminates locks for all non globally escaping
objects. C2 does NOT replace a heap allocation with a stack allocation for non globally escaping objects.

Some scenarios for escape analysis are described next.

® The server compiler might eliminate certain object allocations. Consider the example where a method makes a defensive copy of an object and
returns the copy to the caller.

public class Person {
private String nang;
private int age;
public Person(String personName, int personAge) {
name = personNaneg;
age = personAge;

}

public Person(Person p) { this(p.getNanme(), p.getAge()); }
public int getNane() { return nane; }
public int getAge() { return age; }

}

public class Enpl oyee {
private Person person;

/1 makes a defensive copy to protect against nodifications by caller
public Person getPerson() { return new Person(person) };

public void printEnpl oyeeDet ai | (Enpl oyee enp) {
Person person = enp. get Person();
/1 this caller does not nodify the object, so defensive copy was unnecessary
Systemout.println ("Enpl oyee's name: " + person.getNane() + "; age: " + person.
get Age());

}

The method makes a copy to prevent modification of the original object by the caller. If the compiler determines that the getPerson method is being
invoked in a loop, it will inline that method. In addition, through escape analysis, if the compiler determines that the original object is never modified, it
might optimize and eliminate the call to make a copy.

® The server compiler might eliminate synchronization blocks (lock elision) if it determines that an object is thread local. For example, methods of
classes such as StringBuffer and Vector are synchronized because they can be accessed by different threads. However, in most scenarios, they
are used in a thread local manner. In cases where the usage is thread local, the compiler might optimize and remove the synchronization blocks.

	EscapeAnalysis

