
L-World
Welcome to the L-World early adopter's project !

What are Inline Types?
What is the L-World project?
"L-World"

Prototypes
"LW1" - Minimal L-World
"LW2" - Inline types and indirect projections

What are Inline Types?
Formerly known as "Value Types", renamed "inline-types" ()discussion here
Inline Types are small, immutable, identity-less types
User model: "codes like a class, works like an int"
Use cases: Numerics, algebraic data types, tuples, cursors, ...
Removing identity commitment enables optimizations such as

flattening of inline types in containers such as fields or arrays
reducing cost of indirection and locality of reference with attendant cache miss penalties
reducing memory footprint and load on garbage collectors

Combining Immutability and no identity commitment allows inline types to be stored in registers or stack or passed by value

What is the L-World project?
The L-World project is a series of early prototypes for bring Inline Types to the language and JDK.

builds on work of the previous Minimal Values Types prototype (MVT)
provides a new type which is: immutable, identity-agnostic, non-nullable, non-synchronizable, final
Inline Types contained in References, other Inline Types or in Arrays are flatten-able
Inline Types can contain primitives or references
JVMS class file model for MVT:

Separate descriptors to distinguish inline types from object types using "Q" signatures (Q-Types) similar to how Object
descriptors begin with "L" (L-Types).
Separate bytecodes, starting with "v", called "v-bytecodes" to distinguish from reference "a-bytecodes".

MVT limitations:
No direct support for methods
No compatibility with existing Objects and Interfaces

Enabled exploration of potential maximum optimizations for inline types with minimal impact on existing objects (object identity types)

"L-World"
To maximize backward compatibility with existing Objects and interfaces, i.e. existing L-Types, the current prototype incorporates inline types into the L-
Type system or "L-World".

Inline Types may be referred to by the same "L-Type" descriptors the VM has always operated on:
May implement interfaces with inline types
May pass a inline type as a java.lang.Object, or an interface through existing APIs

Inline Type characteristics:
immutable: unmodifiable instance fields

may contain primitives, other inline types, references to mutable objects
identity-less:

synchronization including use of wait(*), notify*() will fail with exception: IllegalMonitorStateException
reference equality with " " () performs a test, comparing each field (much like carry out == if_acmp<eq|ne> substitutability
"equals()")
freely substitutable when equal, no visible change in behavior if equals()

final
JVMS class file model for "LWorld"

Re-uses "L" descriptors
Re-uses "a-bytecodes"
There are only two new byte-codes, otherwise existing byte-codes have been engineered to accept and maintain inline type
characteristics (identity-less, flattenable, pass by value):

"defaultvalue" - will create a new default inline type
"withfield"- allows updating inline type fields via a copy-on-write semantic, i.e. new value based on the old value combined with
new field value.

Recognize that the path to Valhalla is long, there are number of open issues facing inline types. We wish to solve these incrementally. Fully generic
specialization of inline types with clear and sensible migration rules are going to take more than a single prototype.

https://mail.openjdk.java.net/pipermail/valhalla-spec-experts/2019-April/000916.html
https://wiki.openjdk.org/display/valhalla/Minimal+Value+Types

Prototypes

"LW1" - Minimal L-World
"LW2" - Inline types and indirect projections

https://wiki.openjdk.org/display/valhalla/LW1
https://wiki.openjdk.org/display/valhalla/LW2

	L-World

