
Skara
Repository

https://github.com/openjdk/skara

Mailing List

skara-dev@openjdk.java.net (,)Subscribe Archives

Issues

https://bugs.openjdk.java.net/projects/SKARA/summary

IRC

#skara on OFTC

Table of Contents

Table of Contents
Introduction
Getting Started

Git
Installing the Git CLI client

GNU/Linux
CentOS/Oracle Linux/RHEL
Debian/Ubuntu
Fedora

macOS
Using Homebrew
Using direct download

Windows
Initial Configuration
Additional Clients

CLI
Desktop
Mobile/Tablet
IDE
Text Editors

Resources
GitHub

Creating an account
Associating your GitHub account and your OpenJDK username
OpenJDK Email
Resources

Workflow
Personal forks
Pull requests

Pull request commands
Dependent pull requests

Overview
Tools

Desktop Applications
Mobile/Tablet
IDEs
Text Editors
CLI
Web Browser
Mailing Lists

Setups
Git CLI Client + Web Browser (recommended)
Git Desktop Client + Web Browser
Skara CLI Tools + Mailing Lists

Reporting issues

Introduction

https://github.com/openjdk/skara
mailto:skara-dev@openjdk.java.net
http://mail.openjdk.java.net/mailman/listinfo/skara-dev
https://mail.openjdk.java.net/pipermail/skara-dev/
https://bugs.openjdk.java.net/projects/SKARA/summary
https://www.oftc.net/

The goal of Project Skara was to investigate alternative SCM and code review options for the OpenJDK source code, including options based upon
Git rather than Mercurial, and including options hosted by third parties. That part of the project has now concluded and all active OpenJDK projects
have migrated to GitHub. The continuation of project Skara is now about operating and maintaining the infrastructure necessary to support the current
development processes of the OpenJDK organization.

The technical parts of project Skara includes several server-side tools (also called "bots") aiding contributors during code reviews. The Skara technical
tooling also includes several command-line utilities for interacting with Git source code hosting providers from the command-line.

Using an Git source code hosting provider comes with several benefits, including:external

Performance
Community
API

Many, if not all, external Git source code hosting services available have excellent performance, not only with regards to network performance but also
when it comes to availability (uptime). The largest Git source code hosting providers also offer the OpenJDK community to tap into large, existing,
communities of developers and potential contributors. An additional benefit of using an external Git source code hosting provider is getting access to
an API. These APIs enables programs to interact with developers on the external Git source code hosting provider. Although not impossible to achieve
today by interacting with developers over email, it is considerably harder to implement programs that interpret free form text in emails compared to
using a structured API.

A significant risk when using an external source code hosting provider is to become dependent on the external source code hosting provider. The
version control data itself will always be independent of source code hosting provider due to the distributed architecture of Git itself. However there is
a large risk in metadata such as code review comments becoming "locked in" on a particular external source code hosting provider. Mitigating this risk
is a large part of Project Skara and the following work have been done so far:

replicating all discussions in all pull requests to the OpenJDK mailing lists
archiving all discussions in pull requests in two formats:

mbox (for human consumption)
json (for software consumption) ()not implemented yet

notifications of all pushes to the corresponding *-changes@ mailing lists to avoid dependence on any provider's RSS feedsopenjdk.java.net
using the OpenJDK for user organization and privilege levels to avoid any dependencies on external Git source code hosting census
provider's user organization tool
setting up to the domain to redirect to OpenJDK's current external source code hosting provider to avoid polluting http://git.openjdk.java.net/ JBS
 and with direct links to an external Git source code hosting providermailing lists

Support for external source code hosting provider has been a strict requirement for server-side and client-side tooling to avoid the issue of multiple all
having any tooling take on a dependency on a particular external source code hosting provider's API. All tooling is also required to work with the GitLab

 (GitLab CE) which is an open source project.Community Edition

Another large part of Project Skara has been to ensure that there are workflows available when interacting with a Git external source code multiple
provider, including one that preserves as much as possible of the OpenJDK community's current workflow. The Skara tooling currently supports the
following workflows:

Mailing list + CLI based (similar to current workflow)
Web browser + CLI based
Desktop application
Mobile/tablet application
CLI only
Text editor/IDE

All workflows can be used interchangeably and different contributors can use different workflows at the same time (even while working on the same
change). The support of multiple workflows comes from the APIs provided by the external Git source control hosting provider. Examples of the work
done to support multiple concurrent workflows include:

Two-way mailing list synchronization (you can comment on pull requests via OpenJDK mailing lists)
Automatic "RFR" emails sent to mailing lists for newly created pull requests
Automatically determining mailing lists to "CC" for newly created pull requests
Automatic generation and hosting of "webrevs" (including incremental webrevs)
Automatically adding links to pull requests in issues
Automatically adding links to issues in pull requests
Automatically run "jcheck" on every commit in every pull request
Implement CLI tools to list, fetch, view, approve and integrate pull requests
Implement backwards compatible ports of , and jcheck webrev defpath

Getting Started

The following sections will get you started with and the external Git source code hosting provider .Git GitHub

Git

Installing the Git CLI client

GNU/Linux

CentOS/Oracle Linux/RHEL

https://mail.openjdk.java.net/
http://openjdk.java.net
https://openjdk.java.net/census/
http://git.openjdk.java.net/
https://bugs.openjdk.java.net/
https://bugs.openjdk.java.net/
https://mail.openjdk.java.net/
https://gitlab.com/gitlab-org/gitlab-ce/
https://gitlab.com/gitlab-org/gitlab-ce/
https://openjdk.java.net/projects/code-tools/jcheck/
https://openjdk.java.net/projects/code-tools/webrev/
https://openjdk.java.net/projects/code-tools/defpath/
https://git-scm.com/
https://github.com/

$ sudo yum install git

Debian/Ubuntu

$ sudo apt install git

Fedora

$ sudo dnf install git

macOS

There are two ways to install Git on macOS: using Homebrew or using a direct download.

Using Homebrew

Install Homebrew: https://brew.sh/
brew install git

Using direct download

Go to https://git-scm.com/download/mac

Windows

Install Git For Windows (maintained by Microsoft): . Make sure you select the option to always use unix line endings. The https://gitforwindows.org
OpenJDK build system does not work if the source code has Windows line endings. If you missed this during installation, you can correct it like this:

$ git config --global core.autocrlf false

The OpenJDK build system runs best in Cygwin and while you may use Git from Cygwin for most Git operations, it will not work well with the Skara
tools. The native Windows Git works well enough in Cygwin as long as you do not feed it Cygwin style absolute paths and keep the autocrlf setting as
instructed above.

Initial Configuration

Git requires that you configure a username and an email. Use your full name as your username and your regular email address for the email:

$ git config --global user.name 'Your Full Name'
$ git config --global user.email 'your.name@host.com'

For example my name is "Erik Duveblad" and my email is "erik.helin@ ". Therefore I would run:oracle.com

$ git config --global user.name 'Erik Duveblad'
$ git config --global user.email 'erik.helin@oracle.com'

You will also want to setup the editor that Git will use whenever you need to enter multiple lines of input, for example when writing a commit message
or doing an interactive rebase. I use as my editor and therefore I would run:vim

$ git config --global core.editor 'vim'

Additional Clients

There are several additional clients available for Git that can be used instead of (or in combination with) the Git CLI tool. Please see the following
subsections for how to interact with Git from the desktop, mobile, tablet, IDE or a text editor.

CLI

The following CLI applications can all interact with Git repositories:

lazygit (GNU/Linux, macOS, Windows)
tig (GNU/Linux, macOS, Windows)

https://brew.sh/
https://git-scm.com/download/mac
https://gitforwindows.org
http://oracle.com
https://github.com/jesseduffield/lazygit
https://github.com/jonas/tig

Desktop

The following desktop applications can all interact with Git repositories:

SourceTree (macOS, Windows)
gitg (GNU/Linux)
Tower (macOS, Windows)
GitKraken (GNU/Linux, macOS, Windows)
Sublime Merge (GNU/Linux, macOS, Windows)
TortoiseGit (Windows)
GitFiend (GNU/Linux, macOS, Windows)
Fork (macOS, Windows)
Git Cola (GNU/Linux, macOS, Windows)

Mobile/Tablet

The following mobile/tablet applications can all interact with Git repositories:

Working Copy (iOS, ipadOS)
Pocket Git (Android)

IDE

The following integrated develop environments (IDEs) all have Git support built-in:

Eclipse
NetBeans
IntelliJ IDEA
Visual Studio
Xcode

Text Editors

The following text editors either have Git support built-in or as part of a plugin:

Vim (plugin)fugitive.vim
Emacs (plugin)magit
VS Code (builtin)
Atom (builtin)
Sublime Text (builtin)

Resources

There are a lot blog posts, tutorials, tweets and material about Git on the internet. Unfortunately much of this material is outdated since Git was
created back in 2005. We strongly recommend the or version of the "Pro Git" book by Scott Chacon and Ben Straub available at online e-book https://g

 for learning more about Git (the print version is up-to-date). The book is available online in HTML or can be downloaded in it-scm.com/book/en/v2 not
pdf, epub and/or mobi formats. The book is available under the license and a community keep it continuously up-to-date by CC BY-NC-SA 3.0
contributing to the book's .Git repository

For more information about a particular command, see the online or the man page for the command ()git reference git help <commmand>

If you want to learn more about the inner workings of Git and how it can be implemented then the online book "Write yourself a Git!" by Thibault Polge
is a good resource: https://wyag.thb.lt/

GitHub

GitHub is an external Git source code hosting provider at https://github.com/.

Creating an account

To create an account and get started, follow the instructions at . All OpenJDK contributors must enable https://github.com/join two-factor authentication
(2FA) on GitHub. To enable 2FA for your account on GitHub, follow the instructions at https://help.github.com/en/articles/securing-your-account-with-

.two-factor-authentication-2fa

Associating your GitHub account and your OpenJDK username

If you are an OpenJDK , or in any OpenJDK project (if in doubt, look for your name in the OpenJDK), you can Author Committer Reviewer census
associate your GitHub account with your OpenJDK username by opening an issue at https://bugs.openjdk.java.net/secure/CreateIssue.jspa?

 (Component: admin, type: Task). As a title for the issue, use "Add GitHub user <YOUR-GITHUB-USERNAME>". This way pid=11300&issuetype=3
the server-side tooling (the "bots") will recognize you on GitHub as an OpenJDK Author, Committer or Reviewer. Please do not file a request unless
you are already showing up in the OpenJDK .census

After you have filed the issue and it has been handled by the Skara administrators you will get an e-mail from GitHub with an invitation to join the Open
. The OpenJDK organization on GitHub is just a mirror of the , it is used to control access rights to JDK organization on GitHub OpenJDK census not

repositories etc. If you want your GitHub profile to show that you are a member of the OpenJDK organization, please see the GitHub documentation
for how to enable this.

https://www.sourcetreeapp.com/
https://wiki.gnome.org/Apps/Gitg/
https://www.git-tower.com/
https://www.gitkraken.com/
https://www.sublimemerge.com/
https://tortoisegit.org/
https://gitfiend.com/
https://git-fork.com/
https://git-cola.github.io/
https://workingcopyapp.com/
http://pocketgit.com/
https://www.eclipse.org/
https://netbeans.org/
https://www.jetbrains.com/idea/
https://visualstudio.microsoft.com/
https://apps.apple.com/us/app/xcode/id497799835
https://www.vim.org/
https://github.com/tpope/vim-fugitive/
https://www.gnu.org/software/emacs/
https://magit.vc/
https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://github.com/progit/progit2
https://git-scm.com/docs/
https://wyag.thb.lt/
https://github.com/
https://github.com/
https://github.com/join
https://en.wikipedia.org/wiki/Multi-factor_authentication
https://help.github.com/en/articles/securing-your-account-with-two-factor-authentication-2fa
https://help.github.com/en/articles/securing-your-account-with-two-factor-authentication-2fa
https://openjdk.java.net/bylaws#author
https://openjdk.java.net/bylaws#committer
https://openjdk.java.net/bylaws#reviewer
https://openjdk.org/census
https://bugs.openjdk.java.net/secure/CreateIssue.jspa?pid=11300&issuetype=3
https://bugs.openjdk.java.net/secure/CreateIssue.jspa?pid=11300&issuetype=3
https://openjdk.org/census
https://github.com/openjdk
https://github.com/openjdk
https://openjdk.java.net/census
https://docs.github.com/en/github/setting-up-and-managing-your-github-user-account/publicizing-or-hiding-organization-membership

OpenJDK Email

When you integrate changes to an OpenJDK repository, the author will be "Your Name <openjdk user at openjdk.org>". After completing the steps
above, this email should start forwarding to the address you have registered with OpenJDK. If you add this email to your Github account, Github will
automatically link your OpenJDK commits with your Github user.

Resources

The provides a good introduction to many of the concepts on GitHub For more information about a particular topic, see the GitHub Guides . GitHub
. If you prefer watching a video over reading an article then there are a number of good introduction videos on GitHub reference documentation

Guide's . If you want to learn using a more hands-on approach, then we recommend trying out the .YouTube channel GitHub Learning Lab

Note: Skara makes some slight changes to parts of the GitHub workflow, see the section for more detailsWorkflows

Workflow

As mentioned in the "Introduction" there are several tools a contributor can use based on their preference, but all tools realize an abstract workflow
that has two distinct features:

every contributor will have a of an OpenJDK repository they want to contribute topersonal fork
every change will start out as a pull request

The following two sections will describe the concepts of a personal fork and a pull request in more details. If you are new to Git then we recommend
that you read at least chapter and chapter in the book before proceeding.2 (Git Basics) 3 (Git Branching) Pro Git

The last two sections give an overview of the abstract workflow and the services and commands that Skara's server-side tooling (bots) provide.

Personal forks

A is a copy of another repository with one major difference:personal fork

you can use a pull request to suggest that some changes from your personal fork should be incorporated into the original repository the fork
was created from

There are several advantages to each contributor having a personal fork of the original OpenJDK repository they want contribute to:

Contributors can freely experiment in their personal fork without affecting the original repository
Contributors can back-up work that is in progress by pushing it to their personal fork
Contributors can do ad-hoc collaboration with other contributors in their personal forks

There is also one drawback of each contributor having a personal fork:

The personal fork must from time to time be synced with the original repository. See the FAQ for .how to sync a personal fork

This single drawback is fortunately remedied with the help of that reduce the overhead of syncing a personal fork with the original repository to tools
almost nothing.

An example of a personal fork is which is a personal fork of the repository.edvbld/jdk openjdk/jdk

The concept of a personal fork is present in almost all external Git source code hosting providers.

Pull requests

A is a way to suggest that some changes from a should be incorporated into the original repository the personal fork was pull request personal fork
created from. Reviewers can comment upon and need to approve a pull request before it can be integrated. The concept of a pull request is very
similar to OpenJDK's concept of "RFR" emails - both are used to suggest changes and offer a way for reviewers to provide feedback on the suggested
changes.

Pull requests are most commonly created from a in a and are said to be a branch in the original repository the fork was branch personal fork targeting
created from. For example has created targeting the branch of the OpenJDK repository from the Jorn a pull request foreign-jextract panama-foreign Err

 branch in his of the repository.orCode personal fork panama-foreign

Reviewers can leave comments on a pull request for the author. The author can use the feedback from the reviewers to the pull request. The update
pull request is updated by pushing commits to the branch in the author's personal fork that the pull request was created from.

The outcome of a pull request that has been approved by reviewers is a commit on the branch that the pull request is targeting. The pull request has
then been integrated.

Pull request commands

Project Skara provides contributors and reviewers with additional pull request commands that enable additional functionality. A pull request command
is a comment made to a pull request that starts with a slash ("/"), for example "/integrate". This is a example where the Skara workflow differs slightly
from the workflow offered by most external Git source code hosting providers - almost all external Git source code hosting providers require that a
reviewer/maintainer integrates a pull request into a repository. Skara instead enables the to integrate the pull request with the "/integrate" contributor
command, but the contributor can only issue the "/integrate" command once the pull request passes all pre-integration checks (e.g. jcheck).

https://guides.github.com/
https://help.github.com/en/github
https://help.github.com/en/github
https://www.youtube.com/githubguides
https://lab.github.com/
https://wiki.openjdk.java.net/display/skara#Skara-Workflows
https://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/book/en/v2
https://wiki.openjdk.java.net/display/SKARA/FAQ#FAQ-HowdoIsyncmypersonalforkwiththeoriginalrepositoryitwascreatedfrom?
https://wiki.openjdk.java.net/display/skara#Skara-Tools
https://github.com/edvbld/jdk
https://github.com/openjdk/jdk
https://wiki.openjdk.java.net/display/skara#Skara-Personalforks
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://wiki.openjdk.java.net/display/skara#Skara-Personalforks
http://openjdk.java.net/census#jvernee
https://github.com/openjdk/panama-foreign/pull/40
https://github.com/openjdk/panama-foreign/tree/foreign-jextract
https://github.com/openjdk/panama-foreign
https://github.com/JornVernee/panama-foreign/tree/ErrorCode
https://github.com/JornVernee/panama-foreign/tree/ErrorCode
https://github.com/JornVernee/panama-foreign
https://github.com/openjdk/panama-foreign

For more information about available commands and what they do, please see the .reference

Dependent pull requests

If contributor has two or more changes that internally depend on each other, it's possible to submit separate pull requests for each change using the
dependent pull request feature. This makes it possible to start the review process for the dependent change before the dependency has been
integrated. In a repository where this feature is active, every open pull request gets an automatically updated branch that mirrors the contents of the
pull request source branch. The branch is named . To create a pull request that depends on another pull request, make the dependent pull pr/<ID>
request target the pr/X branch of the dependency. Once the parent pull request has been integrated, any dependent pull requests are automatically
retargeted to the same target as the dependency was. The dependent pull request is also blocked from integrating as long as it's targeting a pr/X
branch.

Note that not all repositories have this feature enabled. If you own a project repository and would like this feature enabled, please file a Skara admin
ticket.

Overview

With the concepts of personal forks and pull requests the abstract and high-level workflow for a contributor looks like:

Contributor creates a personal fork of the OpenJDK repository they want to contribute to
For each change the contributor wants to suggest:

Contributor creates a branch in their personal fork
Contributor pushes commit(s) describing suggested change to the above created branch
Contributor creates a pull request from the above branch in the contributor's personal fork towards a branch in the original OpenJDK
repository
Contributor updates the pull request based on feedback from reviewers (if needed)
Reviewers approve contributor's pull request
Contributor integrates the pull request

Note that the contributor only has to create a personal fork , the same personal fork can be re-used for multiple pull requests. Note also that all once
steps in the above abstract workflow might not be needed depending on which the contributor choose to use to realize this workflow.tools

Tools

A contributor can choose between multiple different tools to achieve a workflow suited to their personal preferences. Some contributors might prefer a
close integration with their IDE of choice while others might work on servers not even having a graphical environment. A contributor can also choose
to combine multiple different tools to great effect. We can not in detail cover all possible setups, but the most common ones will be covered in the
section .Recommended Setups

The following sections provides external links for those wishing to setup e.g. desktop applications, mobile apps and/or IDEs to integrate with a Git
external source code hosting provider.

Desktop Applications

The following desktop applications has integrations with one or more external Git source code hosting providers:

SourceTree (macOS, Windows)
Tower (macOS, Windows)
GitKraken (GNU/Linux, macOS, Windows)
GitHub Desktop (Arch Linux, macOS, Windows)

Mobile/Tablet

The following mobile and tablet applications integrates with one or more external Git source code hosting providers:

GitHub for Mobile (iOS, ipadOS, Android)
Working Copy (iOS, ipadOS)
GitPoint (iOS, Android)
Git Hawk (iOS)
FastHub (Android)

IDEs

The following integrated development environments (IDEs) integrates with one or more external Git source code hosting providers:

Eclipse (requires)MyLyn connector
IntelliJ IDEA (builtin)
Visual Studio (requires plugin)GitHub Extension for Visual Studio

Text Editors

The following text editors integrates with one or more external Git source code hosting providers:

https://wiki.openjdk.java.net/display/SKARA/Pull+Request+Commands
https://wiki.openjdk.java.net/display/skara#Skara-Tools
https://wiki.openjdk.java.net/display/SKARA#Skara-RecommendedSetups
https://www.sourcetreeapp.com/
https://www.git-tower.com/
https://www.gitkraken.com/
https://desktop.github.com/
https://github.com/mobile/
https://workingcopyapp.com/
https://gitpoint.co/
http://githawk.com/
https://github.com/k0shk0sh/FastHub
https://www.eclipse.org/
https://github.com/eclipse/egit-github
https://www.jetbrains.com/idea/
https://visualstudio.microsoft.com/
https://visualstudio.github.com/

Emacs (requires plugin and plugin)magit forge
VS Code (requires plugin)GitHub Pull Requests
Atom (requires plugin)GitHub for Atom

CLI

The following command-line interface applications integrates with one or more Git external source code hosting providers:

hub (FreeBSD, GNU/Linux, macOS, Windows)
GitHub CLI (GNU/Linux, macOS, Windows)
Skara (GNU/Linux, macOS, Windows)

Web Browser

The following web applications (web sites) can be used from a web browser:

GitHub (Firefox, Safari, Chrome, Chromium, Edge)

Mailing Lists

Skara enables two-way synchronization between the and external Git source soure code hosting providers. This enables OpenJDK mailing lists
contributors and reviewers to use the OpenJDK mailing lists for discussing pull requests. The following email clients are recommended to interact with
OpenJDK mailing lists:

Thunderbird (GNU/Linux, macOS, Windows)
mutt (*BSD, GNU/Linux)

Setups

The following sections describe recommended setups and provide a good starting to point for further exploration of other . For contributors who tools
are completely new to Git and external Git source code hosting providers we recommend starting out with using the Git CLI client and a web

. Many other tools assume a familiarity with this setup and it is also the most well documented. For contributors who are application via a web browser
new to Git and not as used to the command-line we recommended starting out with a Git desktop client and a web application via web browser. For a
bit more experienced contributors primarily using CLI applications we recommend using the and the .Skara CLI tools OpenJDK mailing lists

Git CLI Client + Web Browser (recommended)

This setup uses the in combination with a web browser to use the external Git source code hosting provider's web application. To use Git CLI client
this setup contributors must have the following applications installed:

a terminal emulator (e.g. , , , ,)GNOME Terminal Konsole Terminal iTerm2 Windows Terminal
a web browser (e.g. , ,)Chrome Firefox Safari, Edge
the Git CLI client

Contributors will start out by of the upstream OpenJDK repository they want to contribute to. The contributor will then use a creating a personal fork
terminal emulator and the Git CLI client to on their computer (see for how to do this). clone the personal fork to local repository chapter 2 "Git Basics"
The contributor will and then continue to make a number of on that local branch. Finally, when the contributor is create a local branch local commits
ready to propose the change, they will (with the local commits) to their personal fork. The following is an example of Erik push their local branch
cloning his of the , making a branch, making a commit and finally pushing the branch and commit to his personal fork OpenJDK Skara repository
personal fork:

https://www.gnu.org/software/emacs/
https://magit.vc/
https://github.com/magit/forge
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=GitHub.vscode-pull-request-github
https://atom.io/
https://github.atom.io/
https://hub.github.com/
https://cli.github.com/
https://wiki.openjdk.java.net/display/SKARA/CLI+Tools
https://github.com
https://OpenJDK mailing lists
https://www.thunderbird.net/
http://www.mutt.org/
https://wiki.openjdk.java.net/display/SKARA#Skara-Tools
https://wiki.openjdk.java.net/display/SKARA/Skara#Skara-GitCLIClient+WebBrowser(recommended)
https://wiki.openjdk.java.net/display/SKARA/Skara#Skara-GitCLIClient+WebBrowser(recommended)
https://wiki.openjdk.java.net/display/SKARA/CLI+Tools
https://wiki.openjdk.java.net/display/SKARA#Skara-MailingLists
https://wiki.openjdk.java.net/display/SKARA#Skara-InstallingtheGitCLIclient
https://help.gnome.org/users/gnome-terminal/stable/
https://konsole.kde.org/
https://en.wikipedia.org/wiki/Terminal_(macOS)
https://iterm2.com/
https://en.wikipedia.org/wiki/Windows_Terminal
https://www.google.com/chrome/
https://www.mozilla.org/en-US/firefox/new/
https://www.apple.com/safari/
https://www.microsoft.com/en-us/edge
https://wiki.openjdk.java.net/display/SKARA#Skara-InstallingtheGitCLIclient
https://wiki.openjdk.java.net/display/SKARA/FAQ#FAQ-HowdoIcreateapersonalfork?
https://wiki.openjdk.java.net/display/SKARA/FAQ#FAQ-HowdoIclonearepository?
https://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository
https://wiki.openjdk.java.net/display/SKARA/FAQ#FAQ-HowdoIcreatealocalbranch?
https://wiki.openjdk.java.net/display/SKARA/FAQ#FAQ-HowdoImakeacommit?
https://wiki.openjdk.java.net/display/SKARA/FAQ#FAQ-HowdoIpushalocalbranchtoaremoterepository?
https://github.com/edvbld/skara
https://github.com/openjdk/skara

$ git clone https://github.com/edvbld/skara
cloning into 'skara'...
remote: Enumerating objects: 48, done.
remote: Counting objects: 100% (48/48), done.
remote: Compressing objects: 100% (23/23), done.
remote: Total 13764 (delta 5), reused 40 (delta 3), pack-reused 13716
Receiving objects: 100% (13764/13764), 2.18 MiB | 941.00 KiB/s, done.
Resolving deltas: 100% (4565/4565), done.

$ cd skara

$ git checkout -b SKARA-296
Switched to a new branch 'SKARA-296'

$ # hack, hack

$ git add <paths/to/files/that/have/changed>

$ git commit -m skara-296
[SKARA-296 88d7b01] skara-296
 1 file changed, 17 insertions(+), 4 deletions(-)

$ git push --set-upstream origin SKARA-296
Enumerating objects: 25, done.
Counting objects: 100% (25/25), done.
Delta compression using up to 8 threads
Compressing objects: 100% (8/8), done.
Writing objects: 100% (13/13), 1.11 KiB | 1.11 MiB/s, done.
Total 13 (delta 3), reused 0 (delta 0)
remote: Resolving deltas: 100% (3/3), completed with 3 local objects.
remote:
remote: Create a pull request for 'SKARA-296' on GitHub by visiting:
remote: https://github.com/edvbld/skara/pull/new/SKARA-296
remote:
To https://github.com/edvbld/skara
 * [new branch] SKARA-296 -> SKARA-296

The contributor will create the by clicking on the link shown in the output of the command pull request git push --set-upstream origin
. The contributor will then continue to interact with reviewers and making via the web browser and the external Git SKARA-296 pull request commands

source code hosting provider's web application.

Note that with this setup the terminal session does not have to be on the same computer as the web browser - it is perfectly fine to have the Git
repository on a server that the contributor SSH into and then have the web browser on another machine.

Once the contributor has created a couple of pull requests they will probably want to do some additional configuration to speed up parts of the
workflow. We would recommend exploring the following items:

Generating an SSH key
Using ssh-agent for SSH keys
Adding an SSH key to your GitHub account
Use a shorthand for GitHub URLs when cloning over SSH
Adding aliases for common commands
Display the currently checked out branch in the Bash prompt

Git Desktop Client + Web Browser

This setup is very similar to Git CLI Client + Web Browser but instead of using the Git CLI client for interacting with a local and/or remote Git
repository, you use a desktop application. If you are using macOS or Windows as your operating system, then we recommend the Git SourceTree
desktop application. If you want a Git desktop application that is more integrated with GitHub, then we recommend .GitHub Desktop

Skara CLI Tools + Mailing Lists

This setup is the one with the most in common with the traditional OpenJDK workflow. Contributors will use the to create, list, update Skara CLI tools
and integrate pull requests while using the to interact with reviewers and add comments to pull requests (thanks to Skara OpenJDK mailing lists
prodiving bi-directional synchronization between mailing lists and external Git source code hosting providers). See the page for more Skara CLI tools
information about this setup.

https://wiki.openjdk.java.net/display/SKARA/FAQ#FAQ-Whatisapullrequest?
https://wiki.openjdk.java.net/display/SKARA#Skara-Pullrequestcommands
https://wiki.openjdk.java.net/display/SKARA/FAQ#FAQ-HowdoIgenerateanSSHkey?
https://wiki.openjdk.java.net/display/SKARA/FAQ#FAQ-HowdoIgetaroundhavingtotypemypasswordeverytimeIwanttousemySSHkey?
https://wiki.openjdk.java.net/display/SKARA/FAQ#FAQ-HowdoIaddanSSHkeytomyGitHubaccount?
https://wiki.openjdk.java.net/display/SKARA/FAQ#FAQ-GitHubSSHURLsarecumbersometotype,canImakethemshorter?
https://wiki.openjdk.java.net/display/SKARA/FAQ#FAQ-HowdoIaddanaliasforacommand?
https://wiki.openjdk.java.net/display/SKARA/Aliases
https://wiki.openjdk.java.net/display/SKARA/FAQ#FAQ-CanIseethecurrentlycheckedoutlocalbranchinmyprompt?
https://www.sourcetreeapp.com/
https://desktop.github.com/
https://wiki.openjdk.java.net/display/SKARA/CLI+Tools
https://mail.openjdk.java.net
https://wiki.openjdk.java.net/display/SKARA/CLI+Tools

Reporting issues

To report any issues, please file a bug on the Skara project in the . If you have any questions and/or comments, then you can JDK Bug System (JBS)
also send an e-mail to project Skara's .mailing list

https://bugs.openjdk.java.net/
https://mail.openjdk.java.net/mailman/listinfo/skara-dev

	Skara

