
Main
blocked URL

The () Z Garbage Collector ZGC is a scalable low latency garbage collector. ZGC performs all
expensive work concurrently, without stopping the execution of application threads for more than a millis

. It is suitable for applications which require low latency. Pause times are econd independent of the
 that is being used. ZGC works well with heap sizes from a few hundred megabytes to . heap size 16TB

ZGC was initially introduced as an experimental feature in JDK 11, and was declared Production Ready
in JDK 15. In JDK 21 was reimplemented to support generations.

At a glance, ZGC is:

Concurrent
Region-based
Compacting
NUMA-aware
Using colored pointers
Using load barriers
Using store barriers (in the generational mode)

At its core, ZGC is a garbage collector, meaning all heavy lifting work is done while concurrent Java
. This greatly limits the impact garbage collection will have on your threads continue to execute

application's response time.

This project is sponsored by the .OpenJDK HotSpot Group

Contents

blocked URL
Supported Platforms
Quick Start
Configuration & Tuning

Overview
Setting Heap Size
Setting Concurrent GC Threads
Returning Unused Memory to the Operating System
Using Large Pages

Enabling Large Pages On Linux
Enabling Transparent Huge Pages On Linux

Enabling NUMA Support
Enabling GC Logging

Change Log
JDK 21
JDK 18
JDK 17
JDK 16
JDK 15
JDK 14
JDK 13
JDK 12
JDK 11

FAQ
What does the "Z" in ZGC stand for?
Is it pronounced "zed gee see" or "zee gee see"?

Supported Platforms

Platform Supported Since Comment

Linux/x64 JDK 15 (Experimental since
JDK 11)

Linux/AArch64 JDK 15 (Experimental since
JDK 13)

Linux
/PowerPC

JDK 18

macOS/x64 JDK 15 (Experimental since
JDK 14)

macOS
/AArch64

JDK 17

Windows/x64 JDK 15 (Experimental since
JDK 14)

Requires Windows version 1803 (Windows 10 or Windows
Server 2019) or later.

Download

Latest Stable: JDK 21
Latest Development: JDK 22 Early
Access
Source Code

github.com/openjdk/jdk
Blog Posts

ZGC | What's new in JDK 18
ZGC | What's new in JDK 17
ZGC | What's new in JDK 16
ZGC | What's new in JDK 15
ZGC | Using -XX:SoftMaxHeapSize
ZGC | What's new in JDK 14
Compact Forwarding Information
How do 'hot and cold' objects behave?
Talks/Presentations/Podcasts

JVMLS 2023 - (33 min)Video

Oracle Developer Live 2022 - | Slides Vi
 (28 min)deo

Jokerconf 2021 - Slides
Inside Java Podcast - ZGC - (30 Sound
min)
Oracle Developer Live 2020 - | Slides Vi

 (40 min)deo
Oracle Code One 2019 - Slides
PL-Meetup 2019 - Slides
Jfokus 2019 - | (21 min)Slides Video
Devoxx 2018 - | (40 min)Slides Video
Oracle Code One 2018 - | Slides Video
(45 min)
Jfokus 2018 - | (45 min)Slides Video
FOSDEM 2018 - Slides
Mailing List

Subscribe | Archive
Project

Members
JIRA Dashboard
JEPs , , , , , , 333 351 364 365 376 377 439

http://cr.openjdk.java.net/~pliden/zgc/banner.png
http://openjdk.java.net/
http://openjdk.java.net/groups/hotspot/
http://jdk.java.net/21
http://jdk.java.net/22
http://jdk.java.net/22
https://github.com/openjdk/jdk
https://malloc.se/blog/zgc-jdk18
https://malloc.se/blog/zgc-jdk17
https://malloc.se/blog/zgc-jdk16
https://malloc.se/blog/zgc-jdk15
https://malloc.se/blog/zgc-softmaxheapsize
https://malloc.se/blog/zgc-softmaxheapsize
https://malloc.se/blog/zgc-jdk14
https://malloc.se/blog/zgc-jdk14
https://inside.java/2020/06/25/compact-forwarding/
https://inside.java/2020/07/01/hot-and-cold-objects/
https://inside.java/2020/07/01/hot-and-cold-objects/
https://www.youtube.com/watch?v=YyXjC68l8mw
http://cr.openjdk.java.net/~pliden/slides/ZGC-OracleDevLive-2022.pdf
https://www.youtube.com/watch?v=OcfvBoyTvA8
https://www.youtube.com/watch?v=OcfvBoyTvA8
http://cr.openjdk.java.net/~eosterlund/slides/Joker-ZGC-ConcStack.pdf
https://inside.java/2020/10/14/podcast-005/
http://cr.openjdk.java.net/~pliden/slides/ZGC-OracleDevLive-2020.pdf
https://www.youtube.com/watch?v=88E86quLmQA
https://www.youtube.com/watch?v=88E86quLmQA
http://cr.openjdk.java.net/~mikael/presentations/20190917-OracleCodeOne-DEV4459-G1_and_ZGC_A_Look_into_the_Progress_of_Garbage_Collection.pdf
http://cr.openjdk.java.net/~pliden/slides/ZGC-PLMeetup-2019.pdf
http://cr.openjdk.java.net/~pliden/slides/ZGC-Jfokus-2019.pdf
https://www.youtube.com/watch?v=qs2_w0sv3LQ
http://cr.openjdk.java.net/~pliden/slides/ZGC-Devoxx-2018.pdf
https://www.youtube.com/watch?v=7cWiwu7kYkE
http://cr.openjdk.java.net/~pliden/slides/ZGC-OracleCodeOne-2018.pdf
https://www.youtube.com/watch?v=kF_r3GE3zOo
http://cr.openjdk.java.net/~pliden/slides/ZGC-Jfokus-2018.pdf
https://www.youtube.com/watch?v=tShc0dyFtgw
http://cr.openjdk.java.net/~pliden/slides/ZGC-FOSDEM-2018.pdf
http://mail.openjdk.java.net/mailman/listinfo/zgc-dev
http://mail.openjdk.java.net/pipermail/zgc-dev/
http://openjdk.java.net/census#zgc
https://bugs.openjdk.java.net/secure/Dashboard.jspa?selectPageId=17826
https://bugs.openjdk.java.net/secure/Dashboard.jspa?selectPageId=17826
http://openjdk.java.net/jeps/333
http://openjdk.java.net/jeps/351
http://openjdk.java.net/jeps/364
http://openjdk.java.net/jeps/365
http://openjdk.java.net/jeps/376
http://openjdk.java.net/jeps/377
https://openjdk.org/jeps/439

Windows
/AArch64

JDK 16

Quick Start
If you're trying out ZGC for the first time, start by using the following GC options:

 -XX:+UseZGC -XX:+ZGenerational -Xmx<size> -Xlog:gc

For more detailed logging, use the following options:

 -XX:+UseZGC -XX:+ZGenerational -Xmx<size> -Xlog:gc*

See below for more information on these and additional options.

Configuration & Tuning
ZGC has been designed to be adaptive and to require minimal manual configuration. During the
execution of the Java program, ZGC dynamically adapts to the workload by resizing generations, scaling
the number of GC threads, and adjusting tenuring thresholds. The main tuning knob is to increase the
maximum heap size.

ZGC comes in two versions: The new, generational version and the legacy, non-generational version.
The is the older version of ZGC, which doesn't take advantage of generations Non-generational ZGC
(see) to optimize its runtime characteristics. It is encouraged that users transition to use the Generations
newer Generational ZGC.

The is enabled with the command-line options Generational ZGC -XX:+UseZGC -XX:
.+ZGenerational

The is enabled with the command-line option .Non-generational ZGC -XX:+UseZGC

Overview

The following JVM options can be used with ZGC:

General GC Options ZGC Options ZGC Diagnostic Options (-XX:
+UnlockDiagnosticVMOptions)

-XX:MinHeapSize, -Xms
-XX:InitialHeapSize, -
Xms
-XX:MaxHeapSize, -Xmx
-XX:SoftMaxHeapSize
-XX:ConcGCThreads
-XX:ParallelGCThreads
-XX:
UseDynamicNumberOfGCTh
reads
-XX:UseLargePages
-XX:
UseTransparentHugePages
-XX:UseNUMA
-XX:
SoftRefLRUPolicyMSPerMB

-XX:AllocateHeapAt

-XX:
ZAllocationSpikeToler
ance

-XX:
ZCollectionInterval

-XX:
ZFragmentationLimit

-XX:
ZMarkStackSpaceLimit

-XX:ZProactive

-XX:ZUncommit

-XX:ZUncommitDelay

-XX:ZStatisticsInterval

-XX:ZVerifyForwarding

-XX:ZVerifyMarking

-XX:ZVerifyObjects

-XX:ZVerifyRoots

-XX:ZVerifyViews

-XX:ZYoungGCThreads

-XX:ZOldGCThreads

-XX:ZBufferStoreBarriers

In addition to these the following flags are available when the generational mode is enabled with -XX:
+UseZGC -XX:+ZGenerational:

General GC
Options

ZGC Options ZGC Diagnostic Options (-XX:
+UnlockDiagnosticVMOptions)

https://docs.oracle.com/en/java/javase/21/gctuning/garbage-collector-implementation.html#GUID-16166ED9-32C6-402D-BB22-FD85BCB04E57

-XX:
ZCollectionIntervalMinor

-XX:ZCollectionInterval
Major

-XX:
ZYoungCompactionLimit

-XX:ZVerifyRemembered

-XX:ZYoungGCThreads

-XX:ZOldGCThreads

-XX:ZBufferStoreBarriers

Setting Heap Size

The most important tuning option for ZGC is setting the maximum heap size, which you can set with the -
 command-line option. Because ZGC is a concurrent collector, you must select a maximum heap size Xmx

such that the heap can accommodate the live-set of your application and there is enough headroom in
the heap to allow allocations to be serviced while the GC is running. How much headroom is needed very
much depends on the allocation rate and the live-set size of the application. In general, the more memory
you give to ZGC the better. But at the same time, wasting memory is undesirable, so it’s all about finding
a balance between memory usage and how often the GC needs to run.

ZGC has another command-line option related to the heap size named . It can -XX:SoftMaxHeapSize
be used to set a soft limit on how large the Java heap can grow. ZGC will strive to not grow beyond this
limit, but is still allowed to grow beyond this limit up to the maximum heap size. ZGC will only use more
than the soft limit if that is needed to prevent the Java application from stalling and waiting for the GC to
reclaim memory. For example, with the command-line options -Xmx5g -XX:SoftMaxHeapSize=4g
ZGC will use 4GB as the limit for its heuristics, but if it can't keep the heap size below 4GB it is still
allowed to temporarily use up to 5GB.

Setting Concurrent GC Threads

Note! This section pertain to the non-generational version of ZGC. Generational ZGC has a more
adaptive implementation and you are less likely to need to tweak the GC threads.

The second tuning option one might want to look at is setting the number of concurrent GC threads (-XX:
). ZGC has heuristics to automatically select this number. This heuristic ConcGCThreads=<number>

usually works well but depending on the characteristics of the application this might need to be adjusted.
This option essentially dictates how much CPU-time the GC should be given. Give it too much and the
GC will steal too much CPU-time from the application. Give it too little, and the application might allocate
garbage faster than the GC can collect it.

NOTE!! Starting from JDK 17, ZGC dynamically scales up and down the number of concurrent GC
threads. This makes it even more unlikely that you'd need to adjust the concurrent number of GC threads.

NOTE!!! In general, if low latency (i.e. low application response time) is important for you application,
then over-provision your system. Ideally, your system should never have more than 70% CPU never
utilization.

Returning Unused Memory to the Operating System

By default, ZGC uncommits unused memory, returning it to the operating system. This is useful for
applications and environments where memory footprint is a concern, but might have a negative impact
on the latency of Java threads. You can disable this feature with the command-line option -XX:-

. Furthermore, memory will not be uncommitted so that the heap size shrinks below the ZUncommit
minimum heap size . This means this feature will be implicitly disabled if the minimum heap size (-Xms) (

 is configured to be equal to the maximum heap size .-Xms) (-Xmx)

You can configure an uncommit delay using (default is 300 -XX:ZUncommitDelay=<seconds>
seconds). This delay specifies for how long memory should have been unused before it's eligible for
uncommit.

NOTE! Allowing the GC to commit and uncommit memory while the application is running could have a
negative impact on the latency of Java threads. If extremely low latency is the main reason for running
with ZGC, consider running with the same value for and , and use -Xmx -Xms -XX:+AlwaysPreTouch
to page in memory before the application starts.

NOTE!! On Linux, uncommitting unused memory requires with fallocate(2) FALLOC_FL_PUNCH_HOLE
support, which first appeared in kernel version (for tmpfs) and (for hugetlbfs).3.5 4.3

Using Large Pages

Configuring ZGC to use large pages will generally yield better performance (in terms of throughput,
latency and start up time) and comes with no real disadvantage, except that it's slightly more complicated
to setup. The setup process typically requires root privileges, which is why it's not enabled by default.

Enabling Large Pages On Linux

On Linux x86, large pages (also known as "huge pages") have a size of 2MB.

Let's assume you want a 16GB Java heap. That means you need 16GB / 2MB = 8192 huge pages.

The heap requires at least 16GB (8192 pages) of memory to the pool of huge pages. The heap along
with other parts of the JVM will use large pages for various internal data structures (such as code heap
and marking bitmaps). In this example you will reserve 9216 pages (18GB) to allow for 2GB of non-Java
heap allocations to use large pages.

Configure the system's huge page pool to have the required number of pages (requires root privileges):

 $ echo 9216 > /sys/kernel/mm/hugepages/hugepages-2048kB
/nr_hugepages

Note that the above command is not guaranteed to be successful if the kernel cannot find enough free
huge pages to satisfy the request. Also note that it might take some time for the kernel to process the
request. Before proceeding, check the number of huge pages assigned to the pool to make sure the
request was successful and has completed.

 $ cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
9216

NOTE! If you're using a , then the next step (where you mount a hugetlbfs Linux kernel >= 4.14
filesystem) can be skipped. However, if you're using an older kernel then ZGC needs to access large
pages through a hugetlbfs filesystem.

Mount a hugetlbfs filesystem (requires root privileges) and make it accessible to the user running the
JVM (in this example we're assuming this user has 123 as its uid).

 $ mkdir /hugepages
$ mount -t hugetlbfs -o uid=123 nodev /hugepages

Now start the JVM using the option.-XX:+UseLargePages

 $ java -XX:+UseZGC -Xms16G -Xmx16G -XX:+UseLargePages ...

If there are more than one accessible hugetlbfs filesystem available, then (and only then) do you also
have to use to specify the path to the filesystems you want to use. For example, -XX:AllocateHeapAt
assume there are multiple accessible hugetlbfs filesystems mounted, but the filesystem you specifically
want to use it mounted on , then use the following options./hugepages

 $ java -XX:+UseZGC -Xms16G -Xmx16G -XX:+UseLargePages -XX:
AllocateHeapAt=/hugepages ...

NOTE! The configuration of the huge page pool and the mounting of the hugetlbfs file system is not
persistent across reboots, unless adequate measures are taken.

Enabling Transparent Huge Pages On Linux

NOTE! On Linux, using ZGC with transparent huge pages enabled requires .'kernel >= 4.7

Use the following options to enable transparent huge pages in the VM:

 -XX:+UseLargePages -XX:+UseTransparentHugePages

These options tell the JVM to issue calls for memory it maps, which madvise(..., MADV_HUGEPAGE)
is useful when using transparent huge pages in mode.madvise

To enable transparent huge pages, you also need to configure the kernel by enabling mode.madvise

 $ echo madvise > /sys/kernel/mm/transparent_hugepage/enabled

ZGC uses huge pages for the heap, so the following kernel setting also needs to be configured:shmem

 $ echo advise > /sys/kernel/mm/transparent_hugepage/shmem_enabled

It is important to check these kernel settings when comparing the performance of different GCs. Some
Linux distributions forcefully enable transparent huge pages for private pages by configuring /sys

 to be set to , while leaving /kernel/mm/transparent_hugepage/enabled always /sys/kernel
 at the default . In this case all GCs but ZGC /mm/transparent_hugepage/shmem_enabled never

will make use of transparent huge pages for the heap. See for more Transparent Hugepage Support
information.

Enabling NUMA Support

ZGC has NUMA support, which means it will try it's best to direct Java heap allocations to NUMA-local
memory. This feature is . However, it will automatically be disabled if the JVM detects enabled by default
that it's bound to only use memory on a single NUMA node. In general, you don't need to worry about
this setting, but if you want to explicitly override the JVM's decision you can do so by using the -XX:

 or options.+UseNUMA -XX:-UseNUMA

When running on a NUMA machine (e.g. a multi-socket x86 machine), having NUMA support enabled
will often give a noticeable performance boost.

Enabling GC Logging

GC logging is enabled using the following command-line option:

 -Xlog:<tag set>,[<tag set>, ...]:<log file>

For general information/help on this option:

 -Xlog:help

To enable basic logging (one line of output per GC):

 -Xlog:gc:gc.log

To enable GC logging that is useful for tuning/performance analysis:

 -Xlog:gc*:gc.log

Where means log all tag combinations that contain the tag, and means write the log to gc* gc :gc.log
a file named .gc.log

https://www.kernel.org/doc/Documentation/vm/transhuge.txt

Change Log

JDK 21

Support for generations (-XX:+ZGenerational) ()JEP 439

JDK 18

Support for String Deduplication (-XX:+UseStringDeduplication)
Linux/PowerPC support
Various bug-fixes and optimizations

JDK 17

Dynamic Number of GC threads
Reduced mark stack memory usage
macOS/aarch64 support
GarbageCollectorMXBeans for both pauses and cycles
Fast JVM termination

JDK 16

Concurrent Thread Stack Scanning ()JEP 376
Support for in-place relocation
Performance improvements (allocation/initialization of forwarding tables, etc)

JDK 15

Production ready ()JEP 377
Improved NUMA awareness
Improved allocation concurrency
Support for Class Data Sharing (CDS)
Support for placing the heap on NVRAM
Support for compressed class pointers
Support for incremental uncommit
Fixed support for transparent huge pages
Additional JFR events

JDK 14

macOS support ()JEP 364
Windows support ()JEP 365
Support for tiny/small heaps (down to 8M)
Support for JFR leak profiler
Support for limited and discontiguous address space
Parallel pre-touch (when using -XX:+AlwaysPreTouch)
Performance improvements (clone intrinsic, etc)
Stability improvements

JDK 13

Increased max heap size from 4TB to 16TB
Support for uncommitting unused memory ()JEP 351
Support for -XX:SoftMaxHeapSIze
Support for the Linux/AArch64 platform
Reduced Time-To-Safepoint

JDK 12

Support for concurrent class unloading
Further pause time reductions

JDK 11

Initial version of ZGC
Does not support class unloading (using -XX:+ClassUnloading has no effect)

FAQ

https://openjdk.org/jeps/439
http://openjdk.java.net/jeps/376
http://openjdk.java.net/jeps/377
http://openjdk.java.net/jeps/364
http://openjdk.java.net/jeps/365
http://openjdk.java.net/jeps/351

What does the "Z" in ZGC stand for?

It doesn't stand for anything, ZGC is just a name. It was originally inspired by, or a homage to, ZFS (the
filesystem) which in many ways was revolutionary when it first came out. Originally, ZFS was an acronym
for "Zettabyte File System", but that meaning was abandoned and it was later said to not stand for
anything. It's just a name. See for more details.Jeff Bonwick's Blog

Is it pronounced "zed gee see" or "zee gee see"?

There's no preferred pronunciation, both are fine.

https://web.archive.org/web/20170223222515/https://blogs.oracle.com/bonwick/en_US/entry/you_say_zeta_i_say

	Main

