Building OpenJFX

Building a Ul toolkit for many different platforms is a complex and challenging endeavor. It requires platform specific tools such as C compilers as well as
portable tools like Gradle and the JDK. Which tools must be installed differs from platform to platform. While the OpenJFX build system was designed to
remove as many build hurdles as possible, it is necessary to build native code and have the requisite compilers and toolchains installed. On Mac and Linux
this is fairly easy, but setting up Windows is more difficult.

If you are looking for instructions to build FX for JDK 8uNNN, they have been archived here.

® Before you start
® Platform Prerequisites
© Windows
® Missing paths issue
© Mac
© Linux
= Ubuntu 18.04
" Ubuntu 20.04
® QOracle Enterprise Linux 7 and Fedora 21
= CentOS 8
® Common Prerequisites
© OpenJDK
o Git
© Gradle
© Ant
© Environment Variables
® Getting the Sources
® Using Gradle on The Command Line
® Build and Test
© Platform Builds
® NOTE: cross-build support is currently untested in the mainline jfx-dev/rt repo
© Customizing the Build
© Testing
® Running system tests with Robot
Testing with JDK 9 or JDK 10
Integration with OpenJDK
Understanding a JDK Modular world in our developer build
Adding new packages in a modular world
© First Step - development
© Second Step - cleanup

Before you start

Do you really want to build OpenJFX? We would like you to, but the latest stable build is already available on the JavaFX website, and JavaFX 8 is
bundled by default in Oracle JDK 8 (9 and 10 also included JavaFX, but were superseded by 11, which does not). There are also some great community
builds that may work for you.

We are exploring making this easier, by enabling a developer to build a set of javafx.* modules that can be used with a clean OpenJDK build (without the
javafx.* modules). Stay tuned.

Platform Prerequisites

Building WebKit as part of building JavaFX is optional and requires additional steps; these are detailed per operating system below. If you do not build
WebKit, you can use pre-built libraries as detailed here.

Windows
You will need Windows 10 or later (Windows 10 is recommended) 64-bit OS
You need to have the following tools installed:

® Cygwin. Some packages to make sure are installed are:
© openssh

° zip

© unzip

© nake (needed to compile media)
© nakedepend (needed for media)
© Optional: gi t

https://wiki.openjdk.org/display/OpenJFX/Building+OpenJFX+8u
https://gluonhq.com/products/javafx/
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://wiki.openjdk.org/display/OpenJFX/Community+Builds
https://wiki.openjdk.org/display/OpenJFX/Community+Builds
https://github.com/openjdk/jfx/blob/master/WEBKIT-MEDIA-STUBS.md

® Microsoft Visual Studio 2022, either Professional or Community edition. The Deskt op devel opnment wi t h C++ workload is required at most,
but it may be possible to install individual components to satisfy the requirements.

If you build WebKit (it is not built by default) you will need the following additional tools:

® Cmake 3.22.3 or later, available from the Cmake download site
® Additional Cygwin tools:

© bison

° flex

© gperf

© perl (5.10 or later)
© python3

© ruby (2.5 or later)

All commands on this page are ran inside Cygwin (and not in Windows CMD).

You will likely need to set the following env variables to point to your VS 2019 installation, since Microsoft no longer sets such variables. This presumes
that:

® You installed JIDK N in C:\ Program Fi | es\ Java\ j dk- Nwhere N is the JDK version.
® You installed the Community edition of Visual Studio 2019 in C: \ Program Fil es (x86)\ M crosoft Visual Studio\2019\ Conmunity.
If this isn't set correctly, you might see an error during the build saying that vcvar s32. bat is missing.

You should adjust these as needed for your system.

export VS150COMNTOOLS="C:\\Program Files (x86)\\M crosoft Visual Studio\\2019\\ Community\\VQ\ Auxiliary\\Build"
export JAVA _HOME="C:/Program Fil es/ Java/j dk- N'

Note the use of the double backslash in the VS150COVNTOOLS env var. This is needed because the cygwin shell uses the '\' as an escape character. With
JAVA_HOME it is easier to just set it using forward slashes (although backslashes are fine as long as you escape them).

If these definitions aren't persisted between launches of Cygwin, you can either set them in the Windows Environment Variables Ul or in the / hone
/ $user $/ . bash_profi | e file (these are ran on startup). Use export - p to verify that the env variables are set correctly.

Missing paths issue

The initial build process that generates the needed resources is done by the \ bui | dSr ¢ folder. On Windows, it tries to locate all the needed tools and
write their paths to the \ bui | d\ wi ndows_t ool s. properti es file. Sometimes it fails and the file is left blank, which results in various path-not-found
errors, e.g., on W NSDK_DI R. This means that you will have to define these paths manually. For your convenience, here is a ready file from Win10 with
VS2019 Community edition. You will need to correct the user name and possibly the version numbers, but it should give an idea of what the build looks for:

windows_tools.properties

W NDOWS_VS_DEVENVDI R=C: / Program Fi |l es (x86)/M crosoft Visual Studio/2019/Conmunity/ Comon7/1DE

W NDOWS_VS_DEVENVCNVD=C: / Program Fi |l es (x86)/M crosoft Visual Studio/2019/Conmunity/ Comon7/1 DE/ devenv. com

W NDOWS_VS_VCI NSTALLDI R=C: / Program Fil es (x86)/ M crosoft Visual Studio/2019/ Conmmunity/VC

W NDOWS_VS_VSI NSTALLDI R=C: / Program Fil es (x86)/M crosoft Visual Studio/2019/Community

W NDOWS_VS_MBVCDI R=C: / Program Fil es (x86)/M crosoft Visual Studio/2019/Comunity/VC

W NDOWS_VS_| NCLUDE=C: / Program Fi |l es (x86)/M crosoft Visual Studio/2019/ Comunity/VC Tool s/ MSVC/ 14. 28. 29910

[/ ATLMFC/ i ncl ude; C./ Program Fi |l es (x86)/ M crosoft Visual Studio/ 2019/ Conmunity/VC Tool s/ MBVCT 14. 28. 29910/ i ncl ude;
C./Program Fil es (x86)/W ndows Kits/NETFXSDK/ 4. 8/ i ncl ude/um C:/Program Files (x86)/W ndows Kits/10/incl ude/ 10.
0.19041. 0/ ucrt; C./Program Files (x86)/Wndows Kits/10/include/10.0.19041. 0/ shared; C./Program Fi |l es (x86)

/W ndows Kits/10/include/10.0.19041.0/um C./Program Fil es (x86)/W ndows Kits/10/include/10.0.19041.0/wi nrt;C
/Program Fil es (x86)/Wndows Kits/10/include/10.0.19041.0/cppwi nrt; C./Program Files (x86)/M crosoft Visual

St udi o/ 2019/ Communi ty/ VC/ Tool s/ MSVC/ 14. 28. 29910/ ATLMFC/ i ncl ude; C./ Program Fil es (x86)/ M crosoft Visual Studio

/ 2019/ Conmruni t y/ VO Tool s/ MBVCT 14. 28. 29910/ i ncl ude; C./ Program Fil es (x86)/ W ndows Kits/ NETFXSDK/ 4. 8/i ncl ude/ um C:
/ Program Files (x86)/Wndows Kits/10/include/10.0.19041. 0/ ucrt; C:/Program Files (x86)/ W ndows Kits/10/incl ude
/10. 0. 19041. 0/ shared; C:/ Program Fi | es (x86)/W ndows Kits/10/i nclude/10.0.19041.0/um C./Program Fi |l es (x86)

/ W ndows Kits/10/include/10.0.19041.0/winrt; C./Program Files (x86)/W ndows Kits/10/include/10.0.19041. 0/ cppw nrt
W NDOWE_VS LI B=C:/Program Files (x86)/M crosoft Visual Studio/2019/Comunity/VCd Tool s/ MBVC/ 14. 28. 29910/ ATLMFC
/1ib/x64;C./ProgramFiles (x86)/M crosoft Visual Studio/2019/ Conmunity/VC Tool s/ MSVC/ 14. 28. 29910/ |i b/ x64; C:
/Program Fil es (x86)/ W ndows Kits/NETFXSDK/ 4. 8/1ib/unl x64; C./Program Files (x86)/Wndows Kits/10/1i b/ 10.
0.19041. 0/ ucrt/ x64; C./ Program Fil es (x86)/W ndows Kits/10/1ib/10.0.19041. 0/ um x64; C:/ Program Fi |l es (x86)

/M crosoft Visual Studio/2019/ Conmunity/VC Tool s/ MBSV 14. 28. 29910/ ATLMFC/ | i b/ x86; C. / Program Fi |l es (x86)

/M crosoft Visual Studio/2019/ Community/VC Tool s/ MSVC/ 14. 28. 29910/ | i b/ x86; C. / Program Fil es (x86)/ W ndows Kits

/ NETFXSDK/ 4. 8/ 1i b/ um x86; C./ Program Fil es (x86)/Wndows Kits/10/1ib/10.0.19041.0/ucrt/x86; C./Program Files (x86)
/W ndows Kits/10/1ib/10.0.19041. 0/ un x86

W NDOWS_VS_LI BPATH=C: / Program Fil es (x86)/M crosoft Visual Studio/2019/ Community/VC Tool s/ MSVC/ 14. 28. 29910

[/ ATLMFC/ | i b/ x64; C./ Program Fi |l es (x86)/ M crosoft Visual Studio/2019/ Conmunity/VC Tool s/ MBVCT 14. 28. 29910/ 1 i b/ x64;
C./Program Files (x86)/M crosoft Visual Studio/2019/ Comunity/VC Tool s/ MSVC/ 14. 28. 29910/ 1 i b/ x86/ store
/references; C./Program Files (x86)/ W ndows Kits/10/Uni onMet adat a/ 10. 0. 19041.0; C./ Program Fi |l es (x86)/ W ndows

Ki t s/ 10/ Ref erences/ 10. 0. 19041. 0; C: / wi ndows/ M cr osof t . NET/ Fr anewor k64/ v4. 0. 30319; C. / Program Fi | es (x86)

https://cmake.org/download/

/M crosoft Visual Studio/2019/ Community/VC Tool s/ MSVC/ 14. 28. 29910/ ATLMFC/ | i b/ x86; C: / Program Fi |l es (x86)

/M crosoft Visual Studio/ 2019/ Conmunity/VC Tool s/ MBVC/ 14. 28. 29910/ 1 b/ x86; C./ Program Fil es (x86)/M crosoft

Vi sual St udi o/ 2019/ Comuni ty/ VC/ Tool s/ MBVC/ 14. 28. 29910/ | i b/ x86/ st ore/ ref erences; C./ Program Fi | es (x86)/ W ndows
Ki t s/ 10/ Uni onMet adat a/ 10. 0. 19041. 0; C: / Program Fil es (x86)/ W ndows Kits/ 10/ Ref erences/ 10. 0. 19041. 0; C: / wi ndows

/M crosoft. NET/ Framewor k/ v4. 0. 30319

W NDONS_VS_PATH=; C: / Program Fi |l es (x86)/M crosoft Visual Studio/2019/Community/ Conmmon7/ | DE/ Ext ensi ons/ M crosoft
/1ntelliCode/CLI;C /ProgramFiles (x86)/Mcrosoft Visual Studio/2019/ Conmmunity/VC Tool s/ MSVC 14. 28. 29910/ bi n

/ Host X64/ x64; C./ Program Fil es (x86)/M crosoft Visual Studio/2019/Conmunity/ Comon7/| DE/ VO VCPackages; C./ Program
Files (x86)/Mcrosoft Visual Studio/2019/ Community/ Common7/| DE/ CommpnExt ensi ons/ M crosoft/ Test Wndow; C: / Program
Files (x86)/Mcrosoft Visual Studio/2019/ Conmmunity/ Common7/ 1 DE/ CommonExt ensi ons/ M crosoft/ TeanFoundati on/ Team
Expl orer; C./Program Files (x86)/M crosoft Visual Studio/2019/ Community/MSBuil d/ Current/bin/Roslyn; C:./Program
Files (x86)/Mcrosoft Visual Studio/2019/ Conmmunity/ Team Tool s/ Performance Tool s/ x64; C./ Program Fil es (x86)

/M crosoft Visual Studio/ 2019/ Conmunity/ Team Tool s/ Performance Tool s; C./Program Files (x86)/M crosoft Visual

St udi o/ Shar ed/ Cormon/ VSPer f Col | ecti onTool s/ vs2019/ x64; C./ Program Fi |l es (x86)/ M crosoft Visual Studio/ Shared

/ Conmon/ VSPer f Col | ecti onTool s/vs2019/; C./ Program Fil es (x86)/ M crosoft SDKs/ W ndows/v10. 0A/ bi n/ NETFX 4.8 Tool s
/x64/; C./Program Fil es (x86)/HTM. Hel p Wor kshop; C./ Program Files (x86)/M crosoft Visual Studio/2019/Comunity

/ Common7/ | DE/ ConmonExt ensi ons/ M crosof t/ FShar p/; C./ Program Fil es (x86)/ M crosoft Visual Studi o/ 2019/ Comrunity

/ Common7/ Tool s/ devinit; C./Program Files (x86)/Wndows Kits/10/bin/10.0.19041. 0/ x64; C./Program Files (x86)

/ Wndows Kits/10/bin/x64;C./Program Files (x86)/Mcrosoft Visual Studio/2019/ Conmunity/ MsBuild/ Current/Bin;C
/wi ndows/ M crosoft. NET/ Fr anewor k64/ v4. 0. 30319; C: / Program Fil es (x86)/ M crosoft Visual Studio/2019/Conmunity

/ Common7/ | DE/; C./ Program Fil es (x86)/M crosoft Visual Studio/ 2019/ Conmunity/ Common7/ Tool s/; C./Program Files
(x86)/ M crosoft Visual Studio/2019/ Commrunity/ Common7/| DE/ Ext ensi ons/ M crosoft/IntelliCode/CLI;C:/ProgramFiles
(x86)/ M crosoft Visual Studio/2019/ Comrunity/VC Tool s/ MBVC 14. 28. 29910/ bi n/ Host X86/ x86; C. / Program Fi | es (x86)
/M crosoft Visual Studio/ 2019/ Conmunity/ Common7/ | DE/ VO VCPackages; C./ Program Files (x86)/M crosoft Visual Studio
/ 2019/ Communi t y/ Cormon7/ | DE/ CormonExt ensi ons/ M cr osof t/ Test W ndow; C: / Program Fil es (x86)/M crosoft Visual Studio
/ 2019/ Conmruni t y/ Conmon7/ | DE/ CommonExt ensi ons/ M cr osof t / TeanfFoundat i on/ Team Expl orer; C:/ Program Fi | es (x86)

/M crosoft Visual Studio/2019/ Conmmunity/ MSBuil d/ Current/bin/Roslyn;C:/ProgramFiles (x86)/M crosoft Visual

St udi o/ 2019/ Communi t y/ Team Tool s/ Per f ormance Tool s; C./ Program Files (x86)/M crosoft Visual Studi o/ Shared/ Conmon
/ VSPer f Col | ecti onTool s/vs2019/; C./ Program Fil es (x86)/M crosoft SDKs/ W ndows/v10. 0A/ bi n/ NETFX 4.8 Tool s/; C:
/Program Fil es (x86)/HTM. Hel p Workshop; C./Program Fi |l es (x86)/M crosoft Visual Studio/2019/ Comunity/Conmmon7

/1 DE/ ConmonExt ensi ons/ M crosoft/ FSharp/; C./Program Fil es (x86)/M crosoft Visual Studio/ 2019/ Comunity/Conmon7

/ Tool s/ devinit; C./Program Files (x86)/Wndows Kits/10/bin/10.0.19041. 0/ x86; C./Program Files (x86)/Wndows Kits

/ 10/ bi n/ x86; C: / Program Fil es (x86)/M crosoft Visual Studio/2019/ Conmunity/ MSBuil d/ Current/Bin; C /w ndows

/M crosoft.NET/ Framewor k/ v4. 0. 30319; C. / Program Fil es (x86)/M crosoft Visual Studio/2019/Conmmunity/ Common7/|DE ;
C./Program Files (x86)/M crosoft Visual Studio/2019/ Comunity/ Comron7/Tool s/; C:./Users/runneradm n/bootj dk/j dk-
15. 0. 2/ bi n; C./ User s/ runner adm n/ bui | d-t ool s/ apache-ant-1. 10. 5/ bi n; C: / User s/ runner admi n/ cygwi n/ cygw n64/ bi n; C

[User s/ runneradm n/ cygw n/ cygwi n64/ bi n; C./ Program Fi | es/ Power Shel I / 7; C. / User s/ runner admi n/ . dot net/tool s; C.

/ Program Fi | es/ MongoDB/ Server/ 4.4/ bin; C:/aliyun-cli;C: /vcpkg;C./cf-cli;C /ProgramFiles (x86)/NSIS/;C:./Program
Fil es/ Mercurial /; C/ host edt ool cache/ wi ndows/ st ack/ 2. 5. 1/ x64; C: / t ool s/ ghc-9. 0. 1/ bi n; C:/ Program Fi | es/ dot net ; C.
/nysql -5.7.21-wi nx64/ bi n; C./ Program Fi |l es/ RF' R-4. 0. 4/ bi n/ x64; C. / Sel eni um\\bDri ver s/ GeckoDri ver; C./Program Fi | es
(x86)/sbt/bin; C/Rust/.cargo/bin;C/ProgramFiles (x86)/GtHub CLI;C: /ProgramFiles/Gt/bin;C /ProgramFiles
(x86) / pi px_bi n; C:/ host edt ool cache/ wi ndows/ go/ 1. 15. 8/ x64/ bi n; C: / host edt ool cache/ wi ndows/ Pyt hon/ 3. 7. 9/ x64/ Scri pt s;
C: / host edt ool cache/ wi ndows/ Pyt hon/ 3. 7. 9/ x64; C. / host edt ool cache/ wi ndows/ Ruby/ 2. 5. 8/ x64/ bi n; C. / Program Fi | es/ Java
/j dk8u282-b08/ bi n; C./ npml prefix; C./Program Fi | es/ M crosoft SDKs/ Azure/ Azure Dev Spaces CLI;C:/Program Files

/M crosoft SDKs/Azure/ Azure Dev Spaces CLI/; C./Program Files (x86)/M crosoft SDKs/Azure/ CLI 2/ wbi n; C./ ProgranDat a
/ ki nd; C./wi ndows/ syst enB2; C. / wi ndows; C: / wi ndows/ Syst enB2/ Whem C: / wi ndows/ Syst enB2/ W ndowsPower Shel | / v1.0/; C:

/'wi ndows/ Syst enB2/ OpenSSH ; C: / Pr ogr anDat a/ Chocol at ey/ bi n; C./ Program Fil es/ M crosoft/ Wb PlatformInstaller/;C

/ Program Fi | es/ Docker; C./ Program Fi | es/ Power Shel | / 7/ ; C./ Program Fi | es/ dotnet/; C./ Program Fi |l es/ M crosoft SQL
Server/ 130/ Tool s/ Binn/; C./ Program Fi |l es/ M crosoft SQ. Server/Cient SDK/ CDBC/ 170/ Tool s/ Binn/; C./Program Fil es
(x86)/ W ndows Kits/10/ W ndows Perfornmance Toolkit/; C./Program Files (x86)/Mcrosoft SQ Server/110/ DTS/ Bi nn/; C
/Program Files (x86)/M crosoft SQ. Server/120/ DTS/ Binn/; C./ProgramFiles (x86)/M crosoft SQ Server/130/DTS
/Binn/;C/Program Files (x86)/Mcrosoft SQ Server/ 140/ DTS/ Binn/; C /ProgramFiles (x86)/M crosoft SQ. Server/ 150
/ DTS/ Bi nn/ ; C./ Program Fi | es/ nodej s/ ; C./ Progr anDat a/ chocol at ey/ i b/ pul um /t ool s/ Pul um / bi n; C: / Progr anDat a

/ chocol at ey/ | i b/ maven/ apache- maven- 3. 6. 3/ bi n; C:/ Program Fi | es/ M crosoft Service Fabric/bin/Fabric/Fabric. Code; C
/ Program Fil es/ M crosoft SDKs/ Servi ce Fabric/ Tool s/ Servi ceFabri cLocal C ust er Manager ; C. / Program Fi | es/ OpenSSL
/bin;C/Strawberry/c/bin;C/Strawerry/ perl/site/bin;C /Strawberry/perl/bin;C /ProgramFiles/Gt/cnd;C:./Program
Fil es/ Gt/ m ngwe4/ bin; C./Program Files/Gt/usr/bin;c:/tool s/ php;C/ProgramFiles (x86)/sbt/bin;C:./ProgramFiles
/ Tor t oi seSVN bi n; C: / Sel eni umAébDri vers/ ChroneDriver/; C./ Sel eni umAébDri vers/ EdgeDri ver/; C./ Program Fi | es/ CVake

/ bin; C./Program Fi | es/ Amazon/ AWSCLI V2/ ; C:. / Progr am Fi | es/ Amazon/ Sessi onManager Pl ugi n/ bi n/; C. / Program Fi | es/ Amazon
|/ AWBSAMCLI / bin/; C:/ Program Fi |l es (x86)/ Googl e/ O oud SDK/ googl e-cl oud- sdk/ bin; C:/ Program Fi |l es (x86)/M crosoft

Bi zTal k Server/; C./Users/runneradm n/ AppDat a/ Local / M cr osof t/ W ndowsApps; C./ Program Fi |l es (x86)/M crosoft

Vi sual St udi o/ 2019/ Comuni ty/ VC/ Tool s/ LI v bin; C./Program Fil es (x86)/M crosoft Visual Studio/2019/Comrunity

/ Conmon7/ | DE/ ConmbnExt ensi ons/ M cr osof t / CMake/ CMake/ bi n; C: / Program Fil es (x86)/M crosoft Visual Studi o/ 2019

/ Conmuni t y/ Cormon7/ | DE/ CormpnExt ensi ons/ M crosof t / Cvake/ Ni nj a; C. / Program Fil es (x86)/M crosoft Visual Studio

/ 2019/ Communi t y/ Cormon7/ | DE/ VC/ Li nux/ bi n/ Connect i onManager Exe; C: / Program Fil es (x86)/M crosoft Visual Studio

/ 2019/ Conmruni t y/ VC/ Tool s/ LI vl x64/ bi n; C./ Program Fil es (x86)/M crosoft Visual Studio/2019/ Conmunity/ Common7/1 DE
/ CommonExt ensi ons/ M cr osof t / CVake/ CMake/ bi n; C: / Program Fil es (x86)/M crosoft Visual Studi o/ 2019/ Community

/ Conmon7/ | DE/ CormbnExt ensi ons/ M crosof t / CMake/ Ni nj a; C:/ Program Fi |l es (x86)/M crosoft Visual Studio/2019

/ Conmuni t y/ Conrmon7/ | DE/ VC/ Li nux/ bi n/ Connect i onManager Exe

W NDON6_VS_VER=150

W NDOWS_VS_VC TOOLS | NSTALL_DI R=C:/Program Fil es (x86)/M crosoft Visual Studio/2019/ Community/VC/ Tool s/ MSVC/ 14.

28.29910

W NDOWS_VS_VC TOOLS REDI ST_DI R=C:/Program Fil es (x86)/M crosoft Visual Studio/2019/ Comunity/VC/ Redi st/ MVC/ 14.
28.29910

W NDOWS_SDK_DI R=C: / Program Fi |l es (x86)/ W ndows Kits/10

W NDOWE_SDK_VERSI ON=10. 0. 19041. 0

Mac
You will need macOS 12 (Monterey) or later.
Install the following software:

® Xcode 14 or later (14.3 is recommended)

® Xcode developer command line tools — you can install them by using the menus within Xcode: XCode -> Preferences -> Downloads ->
Components

® git

If you build WebKit (it is not built by default) you will need the following additional tools:

® Cmake 3.22.3 or later, available from the Cmake download site
® gperf

Linux

Setting up a Linux build configuration is fairly straightforward. These build instructions were used for Ubuntu 18.04.

Ubuntu 18.04

First, run the following command to install all the required development packages:

sudo apt-get update

sudo apt-get install I|ibavformat-ffnpeg57 |ibgl1l-nmesa-dev \
Ii bx11-dev pkg-config xllproto-core-dev git \
I'i bgt k2. 0-dev i bgtk- 3-dev

If you build WebKit (it is not built by default) you will need the following additional tools:

Cmake 3.22.3 or later, available from the Cmake download site
bison

flex

gperf

perl (5.10 or later)

python3

ruby (2.5 or later)

The following should satisfy the requirements (but check the version of cmake) :

sudo apt-get install crake bison flex gperf ruby

Ubuntu 20.04
Same as Ubuntu 18.04 with the following changes for sudo apt-get install:

1. Change | i bavformat-ffnpeg57tolibavfornat 58
2. Add | i bxxf 86vm dev

Oracle Enterprise Linux 7 and Fedora 21

We use Oracle Linux 7 to build the javafx.* modules that we ship with the Oracle JDK releases. Here are the packages you will need:

yuminstall nercurial git bison flex gperf pkgconfig \
gt k2-devel gtk3-devel pango-devel freetype-devel

CentOS 8

Run the following commands (using Java 11 here as an example):
1. sudo yum update

2. sudo yuminstall git bison flex pkgconfig gtk2-devel gtk3-devel \
pango- devel freetype-devel |ibXtst-devel java-11-openjdk-devel ant gcc-c++

3. sudo yuminstall epel-release

4. sudo yum confi g- manager --set-enabl ed Power Tool s

https://developer.apple.com/xcode/
https://cmake.org/download/
https://cmake.org/download/

5. sudo yum update
6. sudo yuminstall libstdc++-static

7. sudo alternatives --config java

(specify Java 11)

Common Prerequisites

OpenJDK
OpenJFX N is formally compatible with JDK N and N-1. For OpenJFX 13, download OpenJDK 12 or later to use as the boot JDK to build and test

OpenJFX. We recommend to use the latest version, however, Gradle might not support that version, so a version that Gradle supports might also be
required to run Gradle itself (though it will use the latest version of the JDK through toolchain support).

Git

OpenJFX (and OpenJdDK) transitioned to Git as part of Project Skara. The OpenJFX repo is hosted on GitHub at openjdk/jfx. We encourage developers to
become familiar with Git and GitHub.

Many (if not all) IDEs include built in support. For example, Eclipse uses EGit, which can be downloaded through the built-in update site http://download.
eclipse.org/releases/latest/ under Collaboration > Java implementation of Git.

For Linux, the gi t package is included in the list of required packaged that were installed. On Windows, you can also install git as a Cygwin package.

Popular GUI options include SourceTree for Windows or Mac from Atlassian and TortoiseGit for Windows.

Gradle

Gradle is the primary build tool for building OpenJFX. Since the repository includes a Gradle wrapper that will download the correct Gradle version when
needed, you do not need to manually install Gradle. The current and minimum Gradle versions are defined in the source code. If you want to generate a
wrapper yourself (for example, you want to build OpenJFX with a different Gradle version), then you will need to install Gradle.

The sh gradl ewcommand used throughout this document can be replaced with gr adl e when not using the wrapper.

Note: gradle is available as an Ubuntu package, but check the version. This command should work after you set JAVA_HOME:

gradl e -version

Ant

You will need Apache Ant 1.10.5 to build the OpenJFX apps (IMPORTANT: there are known issues with ant 1.9.x, so use either version 1.10.5 or 1.8.2).

Environment Variables
Set the following environment variables:

set JAVA_HOVE and JDK_HOME to point to the root of your jdk-N release

add $JAVA_HOVE/ bi n to your PATH

if you do not use the wrapper, add gr adl e- x. y/ bi n to your PATHwhere x. y is the version
add apache-ant - 1. 10. 5/ bi n to your PATH

Note: on windows, the JAVA_HOME and JDK_HOME variables must be in DOS format (e.g., "C:/Program Files/..." rather than "/cygdrive/c/Program Files
/..."), although you can use forward slashes ('/'). Test your settings with:

"$JAVA_HOVE/ bi n/ j ava" -version
gradle -version
ant -version

IMPORTANT: Any time you change env settings or install new software after a failed build of JavaFX you should execute the following three commands:

sh gradl ew --stop
rm-rf build
sh gradl ew cl ean

The first is needed to stop any gradle daemons that might be running (by default gradle starts a daemon that is used to speed up subsequent builds).
There was a bug in the gradle daemon that causes gradle to ignore any env variables set after the daemon is started (see JDK-8193288). Additionally, on

https://git-scm.com
https://github.com/openjdk/jfx
https://www.eclipse.org/egit/
http://download.eclipse.org/releases/latest/
http://download.eclipse.org/releases/latest/
http://www.sourcetreeapp.com/
https://tortoisegit.org
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://github.com/openjdk/jfx/blob/master/build.properties
http://archive.apache.org/dist/ant/binaries/
https://bugs.openjdk.java.net/browse/JDK-8193288

Windows platforms, the gradle daemon can sometimes interfere with your ability to delete files that it keeps open. If you run into problems you can stop the
gradle daemon with "gradle --stop" (or disable the gradle daemon altogether).

The second is needed because the OpenJFX build caches the results of a previous configuration, in such a way that it can cause gradle clean to fail.

Getting the Sources

All OpenJFX sources are held in https://github.com/openjdk/jfx (see Repositories and Releases). To clone the repo from the command line, use:

for the active devel opnent stream currently targeted for JDK 14
git clone https://github.com openjdk/jfx.git

Other tools will have a clone option.

Using Gradle on The Command Line

Before diving directly into building OpenJFX, lets get our feet wet by learning what kinds of things we can call from the command line, and how to get help
when we need it. The first command you should execute is tasks:

$ sh gradl ew tasks

Al tasks runnable fromroot project

Defaul t tasks: sdk

Basi c tasks

bui | dvbdul eBaseW n - creates javafx.base property files

bui | dMbdul eGraphi csWn - copi es javafx.graphics native libraries
bui I dvbdul eLi bsW n

bui | dvbdul eMedi aW n - copies javafx.media native libraries

bui | dMbdul eSWIW n - copi es SW JAR

bui I dMbdul eWebW n - copies javafx.web native libraries

clean - Deletes the build directory and the build directory of all sub projects
cleanAll - Scrubs the repo of build artifacts

javadoc - Generates the JavabDoc for all the public API

javaf xSwtWn - Creates the javafx-swt.jar for the win target
sdkW n

Buil d tasks

assenbl e - Assenbles the outputs of this project.

build - Assenbles and tests this project.

bui | dDependents - Assenbles and tests this project and all projects that depend on it.
bui I dvbdul esW n

bui | dvbdul eW n

bui | dMbdul eZi pW n

bui | dNeeded - Assenbles and tests this project and all projects it depends on.
bui I dRunAr gsW n

ccWnFont - Conpiles native sources for font for win

ccWnd ass - Conpiles native sources for glass for win

ccWnlio - Conpiles native sources for iio for win

ccWnPrism- Conpiles native sources for prismfor win
ccWnPrisnD3D - Conpiles native sources for prisnD3D for win
ccWnPrisnES2 - Conpiles native sources for prisnES2 for win
ccWnPrisnmSW- Conpiles native sources for prisnmSWfor wn

cl asses - Assenbles nmin classes.

clean - Deletes the build directory.

cleanNative - Clean all native libraries and objects for G aphics
cl eanNat i veDecora - Cl ean native objects for Decora

cl eanNati veFont - O ean native objects for font

cl eanNatived ass - Cl ean native objects for glass

cleanNativelio - Cean native objects for iio

cl eanNativePrism- Cl ean native objects for prism

cl eanNativePrisnD3D - Cl ean native objects for prisnD3D

https://github.com/openjdk/jfx
https://wiki.openjdk.org/display/OpenJFX/Repositories+and+Releases
https://git-scm.com/docs/git-clone

cl eanNativePri snES2 - O ean native objects for prisnES2

cl eanNativePri snSBW- Cl ean native objects for prisnSW

createMsPfile

gener at eD3DHeaders - Generate headers by conpiling hisl files

jar - Assenbles a jar archive containing the nain classes.

jslcd asses - Assenbles jslc classes.

linkWnFont - Creates native dynamic library for font for win

linkWnd ass - Creates native dynamic library for glass for win

linkWnlio - Creates native dynamic library for iio for win

linkWnPrism- Creates native dynamic library for prismfor wn

I'i NkWnPrisnD3D - Creates native dynamc library for prisnD3D for win

linkWnPrisnES2 - Creates native dynamc library for prisnES2 for win

linkWnPrisnSW- Creates native dynamic library for prisnBWfor wn

native - Conpiles and Builds all native libraries for G aphics

nati veDecora - Generates JNI headers, conpiles, and builds native dynamic library for Decora

nati veFont - Generates JNI headers, conpiles, and builds native dynamic library for font for all conpile targets
natived ass - Generates JNI headers, conpiles, and builds native dynamc library for glass for all conpile
targets

nativelio - Generates JNI headers, conpiles, and builds native dynamic library for iio for all conpile targets
nativePrism- Generates JNI headers, conpiles, and builds native dynamic library for prismfor all conpile
targets

nativePrisnD3D - Cenerates JNI headers, conpiles, and builds native dynamc library for prisnD3D for all
conpile targets

nativePrisnES2 - CGenerates JNI headers, conpiles, and builds native dynamc library for prisnES2 for all
conpile targets

nativePri snSW- Generates JNI headers, conpiles, and builds native dynamic library for prisnSWfor all conpile
targets

rcFont - Conpiles native sources for font

rcd ass - Conpiles native sources for glass

rclio - Conpiles native sources for iio

rcPrism- Conpiles native sources for prism

rcPrisnD3D - Conpiles native sources for prisnD3D

rcPrisnmES2 - Conpil es native sources for prisnES2

rcPrisnBW- Conpiles native sources for prisnSW

shadersCl asses - Assenbl es shaders cl asses.

shi msCd asses - Assenbl es shins cl asses.

stubCl asses - Assenbl es stub cl asses.

testapplCl asses - Assenbles testappl cl asses.

test app2C asses - Assenbl es testapp2 cl asses.

testapp3C asses - Assenbl es testapp3 cl asses.

test app4C asses - Assenbl es testapp4 cl asses.

test app5C asses - Assenbl es testapp5 cl asses.

testapp6C asses - Assenbl es testapp6 cl asses.

test Cl asses - Assenbles test classes.

tool sCl asses - Assenbles tools classes.

Buil d Setup tasks
init - Initializes a new Gradle build.
wr apper - Cenerates Gradle wapper files.

Docunent ati on tasks

javadoc - GCenerates Javadoc APl docunentation for the main source code.

Hel p tasks

bui | dEnvironnment - Displays all buildscript dependencies declared in root project 'rt'.

conponents - Displays the conponents produced by root project 'rt'. [incubating]

dependencies - Displays all dependencies declared in root project "rt'.

dependencyl nsight - Displays the insight into a specific dependency in root project "rt'.

dependent Conponents - Displays the dependent conponents of conponents in root project 'rt'. [incubating]
hel p - Displays a hel p nessage.

nodel - Displays the configuration nodel of root project 'rt'. [incubating]

projects - Displays the sub-projects of root project 'rt'.

properties - Displays the properties of root project 'rt'.

tasks - Displays the tasks runnable fromroot project 'rt' (sone of the displayed tasks may bel ong to
subproj ects).

Publ i shing tasks

gener at eMet adat aFi | eFor Javaf xPubl i cation - Generates the Gradle netadata file for publication 'javafx'.
gener at eMet adat aFi | eFor MavenPubl i cation - Generates the Gradle netadata file for publication 'maven'.
gener at ePonFi | eFor Javaf xPubl i cation - Generates the Maven POMfile for publication 'javafx'.
gener at ePonfi | eFor MavenPubl i cati on - Generates the Maven POMfile for publication 'nmaven'.

publish - Publishes all publications produced by this project.

publ i shJavaf xPubl i cati onToMavenLocal - Publishes Maven publication 'javafx' to the |ocal Maven repository.
publ i shJavaf xPubl i cati onToMavenRepository - Publishes Maven publication 'javafx' to Maven repository 'nmaven'.
publ i shMavenPubl i cati onToMavenLocal - Publishes Maven publication 'naven' to the |ocal Maven repository.

publ i shMavenPubl i cati onToMavenRepository - Publishes Maven publication 'maven' to Maven repository 'maven'.
publ i shToMavenLocal - Publishes all Maven publications produced by this project to the local Maven cache.

Verification tasks

check - Runs all checks.

test - Runs the unit tests.

To see all tasks and nore detail, run gradle tasks --all

To see nore detail about a task, run gradle help --task <task>

BU LD SUCCESSFUL in 19s
1 actionable task: 1 executed

The tasks task is extremely helpful. You use it to discover all the other things you can do with this build file. You notice at the top of the output the phrase
"All tasks runnable from root project”. The "root" project is "rt". That is, we are in the root project. Below the root project are a series of sub projects, some
of which are referred to as modules or "components”. But more about those later.

Gradle then tells us what the default tasks are. In this case, our default task is the 'sdk’ task. This is the task that will be executed if you just call 'gradle’
alone without providing any additional arguments. After this comes a listing of different tasks, broken out by group. The first group is the "Basic" group
which contains the tasks you may find yourself using most often. These are all named and have a description provided. For example, if | wanted to execute
the ‘clean’ task, then | would do so like this:

$ sh gradl ew cl ean

Finally, the tasks task gives us a useful hint that we can pass the --all argument in order to see all of the tasks in more detail. This produces a lot more
output, but really gives an in depth look at what tasks are available for you to call.

| mentioned above that our root project is called "rt", and that we have sub-projects in the gradle build. To see all of the projects available to you, execute

the projects task (which you will notice was in the "Help tasks" group produced by the tasks task). This lists not just what projects are available, but what
their name is, and what the project hierarchy is.

$ sh gradl ew projects

:projects

Root project 'rt'

+--- Project ':apps'

+--- Project ':base'

+--- Project ':controls'
+--- Project ':fxm’

+--- Project ':graphics’
+--- Project ':nedia'

+--- Project ':swing'

+--- Project ':swt'

+--- Project ':systenfests'
\--- Project ':web'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For exanple, try running gradle :apps:tasks

BU LD SUCCESSFUL in 1s

1 actionable task: 1 executed

Projects in gradle are named according to their depth. So the root project is simply named "rt" (or whatever your top directory is named). The immediate
subprojects are all prefixed with a ":". Sub-subprojects have their parents in their name, for example, ":graphics:effects-jsl". When you execute a command
such as gradle assemble what actually happens is that Gradle locates the assemble task on all projects and executes them. (TODO Is this entirely
accurate?)

There are a couple other tricks-of-the-trade that you should be aware of. You can execute any gradle command with - - i nf o or - - debug in order to get
more output. Running in - - i nf 0 mode provides some additional debugging output that is very useful when things go wrong.

https://wiki.openjdk.org/display/OpenJFX/Projects+and+Components
http://graphicseffects-jsl

One more trick is the - - pr of i | e argument. You can perform any gradle task and use the - - pr of i | e argument. This will cause gradle to keep track of
how long various parts of the build took, and will produce an HTML report in build/reports/profile. The report breaks down how much time was spent in
configuration, dependency resolution, and task execution. It further breaks it down by project. This gives useful metrics for tracking down which parts of the
build take the longest and hopefully tighten up the build times.

Build and Test

There are three main things you may want to do on a regular basis when working on JavaFX: building, testing, and creating documentation. Lets look at
each of these in turn.

The simplest basic task to build is the sdk task. The sdk task will compile all Java sources and all native sources for your target platform. It is the default
task which is executed if you do not supply a specific task to run. It will create the appropriate sdk directory and populate it with the native dynamic libraries
and the jfxrt.jar. Because the SDK is not distributed with documentation, the javadocs are not created as part of the sdk task by default. Once the sdk task
has completed, you will have and SDK distribution which you could run against or give to somebody else to run.

$ sh gradl ew

: bui | dModul esLi nux

: bui | dRunAr gsLi nux

: bui I dMbdul es

:createTest Argfil esLi nux

: sdkLi nux

:sdk

BUI LD SUCCESSFUL in 1m 48s

127 actionabl e tasks: 127 executed

You can find the built SDK in the build/modular-sdk directory:

$ pwd
[Users/ ker/jfx-dev/rt

$1s -1 build/
-rwr--r-- 1 kcr kcr 1621 Dec 22 09: 54 conpile. args
drwxr-xr-x 2 kcr kcr 4096 Dec 22 09:54 |ibs/

STWTF--T-- ker ker 47 Dec 22 09:54 linux_freetype_tools.properties
STW--T-- kcr kcr 681 Dec 22 09:54 |inux_gtk2.properties
STWr--T-- ker kecr 799 Dec 22 09:54 |inux_gtk3. properties

1

1

1
-rwr--r-- 1 kcr ker 255 Dec 22 09:54 |inux_pango_tools. properties
drwxr-xr-x 9 kcr kcr 4096 Dec 22 09: 54 nodul ar-sdk/
-rwr--r-- 1 kcr kcr 1916 Dec 22 09:54 run. args
-rwr--r-- 1 kcr kecr 1379 Dec 22 09:54 run.java. policy
-rwr--r-- 1 kcr ker 1304 Dec 22 09:54 test.java.policy
-rwr--r-- 1 kcr kcr 1551 Dec 22 09:54 testconpile.args
-rwr--r-- 1 kcr kcr 1846 Dec 22 09:54 testrun.args
drwxr-xr-x 3 kcr kcr 4096 Dec 22 09:54 tnp/

The sdk task will build an OpenJFX SDK for your particular platform. Gradle automatically handles the downloading of all dependencies (such as Antlr and
SWT located under \ rt\ bui | d\'I i bs).

For more information on build properties, see Customizing the Build.

Platform Builds

NOTE: cross-build support is currently untested in the mainline jfx-dev/rt repo

The build is configured to support cross builds, that is, the ability to build an SDK for a platform other than the one you are building from. There are multiple
gradle files located in buildSrc which represent specific compile targets. These include:

win.gradle
mac.gradle
linux.gradle
android.gradle
ios.gradle
armvé6sf.gradle
armv6hf.gradle

Each of these have specific prerequisites that must be met before they can be built. win.gradle can only be used on Windows, mac.gradle on Mac, and
linux.gradle on Linux. Android can be cross built from Mac, Windows, or Linux so long as the Android SDK and NDK are installed and the build knows
where to find them. iOS can be cross built on Mac. ARM (soft float and hard float) can be cross built from Linux.

By default, the OpenJFX build system will only build the SDK for the desktop platform you are building from. To ask it to build for a specific compile target,
you must pass a COMPILE_TARGETS property to the build system, instructing it which to build. This is a comma separated list. Assuming you have
already setup the prerequisites for building ARM (for example, when targeting the Raspberry PI), you would invoke gradle like this:

$ sh gradl ew - PCOWPI LE_TARGETS=ar mv6hf

Customizing the Build

The build can be customized fairly extensively through the use of Gradle properties. Gradle provides many ways to supply properties to the build system.
However the most common approach will be to use a gradle.properties file located in the rt directory. Simply make a copy of gradle.properties.template
and then edit the resulting gradle.properties file to customize your build.

$ cp gradle.properties.tenplate gradle. properties

The gradle.properties file that you have just created is heavily documented and contains information on all the different configuration options at your
disposal.

Arguably the most important property in the build is the JIDK_HOME property, which will be set to the value of $JAVA_HOME if you haven't explicitly set it.
Almost all other properties are derived automatically from this one. The JDK_HOME is by default based on the java.home System property, which is set
automatically by the JVM based on which version of Java is executed. Typically, then, the version of Java you will be using to compile with will be the
version of Java you have setup on your path. You can of course specify the JDK_HOME yourself. Note also that on Windows, the version of the JDK you
have set as JDK_HOME will determine whether you build 32 or 64 bit binaries.

Testing

The next basic task which you may want to perform is test. The test task will execute the unit tests for all projects (all modules). If you want to execute only
those tests related to a single project, you can do so in the normal fashion:

$ sh gradl ew : base: test

The Conpil eOptions. useAnt property has been deprecated and is scheduled to be renbved in Gadle 2.0. There is
no replacenment for this property.

: base: processVersi on UP- TO- DATE

:bui 1 d-t ool s: gener at eG anmar Sour ce UP- TO- DATE

2 buil d-tool s: conpi | eJava UP- TO- DATE

:bui 1 d-t ool s: processResour ces UP- TO- DATE

:bui I d-tool s: cl asses UP- TO DATE

:build-tool s:jar UP-TO DATE

: base: conpi | eJava UP- TO- DATE

: base: processResour ces UP- TO- DATE

: base: cl asses UP- TO DATE

: base: conpi | eTest Java UP- TO- DATE

: base: processTest Resour ces UP- TO- DATE

- base: testd asses UP- TO- DATE

> Building > :base:test > 3411 tests conpl eted, 45 skipped

Gradle gives helpful output during execution of the number of tests completed and the number skipped without dumping out lots of output to the console
(unless you opt for - - i nf 0). Also, once the tests complete, an HTML report is dumped to the project's build/reports/test directory (for example, modules
/base/build/reports/test):

http://www.gradle.org/docs/current/dsl/org.gradle.api.Project.html

@

0e Test results - Class com.sun.javafx.collections.ListListenerHelperTest "
r_,» 3| [€ file:// fUsers/rbair/Projects {JavaFX /graphics-8.0/javafx /modules/base build freports tests/com.sun javafx.collecti & | feacer | [@
UXSpecs ¥ Personal ¥ Oracle v Hudson JavaDoc7 FXDoc FX(CSS Wiki Client Wiki APl Changes Oko JIRA Cruicible Aurora 3 [F]

E

Class com.sun.javafx.collections.ListListenerHelperTest
all >com.sun javafx.collections > ListListenerHelperTest

21 0 0.007s 100%

tests failures duration

successful

Tests
Test Duration Result
testAddinvalidationListener_Null Os passed
testAddListChangeListener_Null 0.001s passed
testChange_AddChange Os passed
testChange_AddInvalidation Os passed
testChange_ChangelnPulse Os passed
testChange_Simple Os passed
testEmpty Os passed
testGeneric_AddChange Os passed
testGeneric_AddChangelnPulse 0.001s passed
testGeneric_AddInvalidation 0.001s passed
testGeneric_AddInvalidationinPulse Os passed
testGeneric_RemoveChange 0s passed

B e

For the sake of performance, most of the tests are configured to run in the same VM. However some tests by design cannot be run in the same VM, and
others cannot yet run in the same VM due to bugs or issues in the test. In order to improve the quality of the project we need to run as many tests as
possible in the same VM. The more tests we can run on pre-integration the less likely we are to see failures leak into master. Being able to run 20,000
tests in a minute is extremely useful, but not possible, unless they run in the same VM. Something to keep in mind.

Running system tests with Robot

When running a system test that requires the Robot API, additional flags need to be passed:

sh gradl ew - PFULL_TEST=true - PUSE_ROBOT=true :systenfests:test --tests Testd assNane

Testing with JDK 9 or JDK 10

Using the results of a modular OpenJFX build is quite simple. A "run" args file can be used to point to the overriding modules that are in your build. (args
file support for java was added in JDK 9) The file build/run.args and build/compile.args are created during the FX build process. The run.args file contains
full paths to the overriding modules and shared libraries, and so must be recreated if you are using a copied or downloaded module set (for example from
a nightly build). A script is provided that will recreate the xpatch.args file in the current directory:

bash tool s/ scripts/make_runargs. sh /absol ute_pat h_t o/ nodul ar - sdk

The following can be used to set up an alias that can be used to launch a JFX application, but using the FX binaries from your development tree. This alias
will override the modules built into JDK9.

export JAVA HOVE="pat h_t o_t op_of _JDK"

export JFX BUI LD="pat h_to_t op_of _your_repo"

export JFX_PATCH=$JFX_BUI LD bui I d/run.args (or the path to one created by make_runargs. sh)
alias javafx='$JAVA HOVE/ bi n/j ava @JFX_PATCH

This alias uses the @argfile mechanism to include all that Xpatch/java.library.path verbosity to create a single command to run FX backed by your recently
built binaries.

In Windows, the paths for the alias can be a bit tricky to get right, as the JDK wants native Windows paths, and cygwin often works better with a Unix path.
Here is an example that works with Cygwin:

export JAVA HOME= cygpath -m "/cygdrive/c/Program Fil es/Java/jdk-9/""
export JFX_PATCH="cygpath -m "$JFX_BUI LD/ bui |l d/run. args""

alias javafx=""$JAVA_HOME/bin/java" @$JFX_PATCH'

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html#commandlineargfile
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html#commandlineargfile

Integration with OpenJDK

With the module system in JDK 9 and later, it is not possible to easily overlay an OpenJFX build over an existing JDK as was possible with JDK 8. It is
possible to build an OpenJDK that included the updated OpenJFX modules.

To create an integrated OpenJDK with OpenJFX requires two builds:

® OpenJFX for JDK
® OpenJDK, with a configure reference that includes your OpenJFX build.

See the following instructions for building OpenJDK. Use the following repository path: http://hg.openjdk.java.net/jdk/jdk.
Build OpenJFX first.
Configure the JDK with the following addition:

--with-import-modules=_path_to_jfx-dev_/rt/build/modular-sdk

Then build the JDK as normal.

Understanding a JDK Modular world in our developer build

The export of module packages is governed by two sets of files:

® module-info.java, the per module declarations
® module-info.java.extra, fragments of declarations used to augment standard JDK module-info.

During the build process, we generate some files for use by the build, and also by developers working in the sandbox.

® runs.args: for use with the java command, overrides as much as possible the FX modules in the JDK
© must use absolute system paths internally, so cannot be easily copied without editing
© can be rebuilt with tools/scripts/make_runargs.sh
© cannot override with any local changes in module-info, so added packages may need an "--add-exports to be seen.
© does not "re" grant any privileges that our default FX modules have with a security manager
® compile.args: arguments to allow for compile using the sandbox libraries
© must use absolute system paths internally, so cannot be easily copied without editing
© cannot override with any local changes in module-info, so added packages may need an "--add-exports to be seen.
® run.java.policy: a minimum permissions file to use with the security manager.
© intended primarily as a base to start with before adding test specific permissions.

Each of these files has a "test" variant, for example "testrun.args". These files are altered to add in the "shims" version of the module. Note that the build
/shims is not populated by the "sdk" task. Use the "copyGeneratedShims" or "test" task.

When dealing primarily with unit tests, additional arguments are needed to access non public API from within the unit tests. These additional arguments
have been placed in "addExports" that are local to the tests that need them. For example, "modules/javafx.graphics/src/test/addExports" contains all of the
"--add-exports" clauses required to compile and run all of the graphics module junit tests. Care should be taken when modifying these files, as additions
may mean that package module-info may need updates too. Keep in mind - if you are adding an "--add-exports" to ALL-UNNAMED so that a junit test can
see the API, then the addExports the right place. If you are trying to fix access by another module, it likely is the wrong place.

Adding new packages in a modular world

The JDK Module System adds complexity to the development chain, but particularly when adding new API and especially packages. Adding a new
package or changing package visibility will be a multi step task that will require at least two change sets to implement.

Our developer sandbox build uses several items to work around module export during build and testing that you should be familiar with.

Create a "followup JBS" to cover the cleanup/removal of module access workarounds. Be sure to link this new followup JBS to the one you started with.

First Step - development

Modify affected modules module-info to reflect the proposed changes. These changes will only directly affect the current build java compile process. It is
key to remember that the java runtime will ignore any changes to module-info, even while it uses "--patch-module".

The next modify buildSrc/addExport files to mirror changes that were made in the module-info files. Mark any additions with a comment containing the
"Completion JBS" number, like this:

to be renpved by 8IXXXXX

- - add- expor t s=j avaf x. gr aphi cs/ com sun. j avaf x. newpackage=j avaf x. control s
- - add- expor t s=j avaf x. gr aphi cs/ com sun. j avaf x. newpackage=ALL- UNNAVED

Note, if you add a junit test that for the new package, you will likely also need an export to ALL-UNNAMED (which the junit jar is a member of). The result
may be two exports in buildSrc/addExport to add the temporary workarounds required for both development and test. If you are not modifying unit tests -
do not add the ALL-UNNAMED line.

http://hg.openjdk.java.net/jdk/jdk/raw-file/tip/doc/building.html
http://hg.openjdk.java.net/jdk/jdk

Complete development of your new package and adding unit test coverage, and all of the other process we normally do.

Your complete change set will now contain all of the delta required for the nightly build and test your changes. The promotion process will soon merge your
module-info changes into the JDK. Once there is a promoted JDK that has the new module-info changes, it is possible to move to the second step.

One consideration - building a local development copy of the JDK is not difficult. In some cases, it may be useful to create a local developer JDK that
incorporates the module-info changes, even before development of the changeset it complete. This developer JDK will honor the new package exports

without the need of the changes to the addExport files. Note however, your change set may break the build if it has not be tested with the current minimum
promoted JDK build.

Second Step - cleanup

Once the changes are promoted into a JDK, the second step to remove the addExports workarounds can be scheduled with the team lead.
As both the build machine and the other developers will need to update to the newer JDK build, this step will need to be coordinated.
Create a change set with:

® the now unneeded addExport lines removed
® the minimum JDK version used by the build has been updated to the new minimum

Test, review and commit as normal.

	Building OpenJFX

