
Pull Request Commands
Project Skara provides contributors and reviewers with additional pull request commands that enable additional functionality. A  is a pull request command
comment made to a pull request that starts with a slash ("/"), for example "/integrate", "/csr" or "/sponsor". The command may appear on any line and with 
an arbitrary amount of whitespace in front of it, but it must be the first non whitespace characters that appear on a particular line. Pull request commands 
can also be placed  of the pull request body. Pull request commands can be used with  pull requests. at the end draft

Skara will only evaluate a given command once, so if you make a mistake and get an error message back, you need to enter a new command in a new 
comment. Editing the previous comment will not have any effect.

Note that if you are using Skara on Gitlab, there are built in commands that clash with some of the Skara commands. To enforce use of the Skara 
command and not the Gitlab variant, you can put some whitespace in front of the command in the comment.

Commands

/integrate
Syntax
Description
Examples

/sponsor
Syntax
Description
Examples

/issue
Syntax
Alias
Description
Examples

/summary
Syntax
Description
Examples

/contributor
Syntax
Description
Examples

/csr
Syntax
Description
Examples

/jep
Syntax
Description
Examples

/reviewer
Syntax
Description
Examples

/reviewers
Syntax
Description
Examples

/label
Syntax
Alias
Description
Examples

/clean
Syntax
Description

/open
Syntax
Description

/backport
Syntax
Description
Examples

/help
Syntax
Description
Examples

/integrate

Syntax

https://wiki.openjdk.java.net/display/skara/FAQ#FAQ-Whatisadraftpullrequest?


/integrate [auto|delegate|undelegate|manual|<hash>]

Description

The pull request command that all contributors will use is the  command that integrates an approved pull request into a repository. This is an /integrate
example where the Skara workflow differs slightly from the workflow offered by most external Git source code hosting providers - almost all external Git 
source code hosting providers require that a reviewer/maintainer integrates a pull request into a repository. Skara instead enables the  to contributor
integrate the pull request with the  command, but the contributor can only issue the  command once the pull request passes all /integrate /integrate
pre-integration checks (e.g. jcheck).

The  command will by default  all commits in the pull request into one,  the resulting commit on top of the target branch and /integrate squash rebase
automatically create an appropriate commit message. The squashing of all commits in the pull request enables contributors to update a pull request by 
simply pushing to the branch in the contributor's personal fork the pull request was created from. The rebasing of the resulting commit enables contributors 
to simply merge the target branch into the source branch for the pull request whenever changes from the target branch needs to be incorporated (instead 
of doing complicated rebases and force pushes). The automatic formatting of the commit message frees contributors from having to consider the details of 
the commit message format.

A hash can be supplied to  and in that case an  integration is performed. An atomic integration squashes and rebases on the commits /integrate atomic
on top of the given hash, and then tries to push the result. An atomic integration will fail if the supplied hash is  the head of the target branch at the not
moment of the push. This means that you can be sure that if you supply a hash to , then your pull request will only be squashed and rebased /integrate
on top of the given commit, nothing else. This can be useful for large and complicated changes when you are unsure about potential conflicts with other 
commits.

The  parameter is used to label a pull request to be automatically integrated as soon as all pre-integration checks are passing. This can be a good auto
idea to save time when a change is comparatively benign and only the minimum amount of review is needed.

The  parameter is used to undo the effects of the  parameter.manual auto

If a contributor of a pull request will be unable to perform the integration at a suitable time, they may delegate the ability to integrate to any other committer 
in the project. This is done using . Issuing this command will not immediately integrate a pull request, instead any committer in /integrate delegate
the project will be able to issue the  command to perform the integration. This can be undone by the original contributor running /integrate /integrate

.undelegate

Examples

/integrate
/integrate 38d3c3d937675ac5d550659825b7e99ed1eb3921

/sponsor

Syntax

/sponsor [<hash>]

Description

Marks you as the  of the pull request  integrates the pull request. A contributor who is not a  must first issues the  pull sponsor and Committer /integrate
request command to mark a pull request as ready for integration. Once the pull request author has issued the  pull request command, a /integrate Committer
must then issue the  pull request command to integrate the pull request. The  pull request take an optional hash for atomic  /sponsor /sponsor
integrations, just like the  pull request command./integrate

Examples

/sponsor
/sponsor 38d3c3d937675ac5d550659825b7e99ed1eb3921

/issue

Syntax

/issue [add|remove] <id>[,<id>,...]

Alias

/solves

Description

https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History
https://git-scm.com/book/en/v2/Git-Branching-Rebasing
http://openjdk.java.net/sponsor/
http://openjdk.java.net/bylaws#committer
https://wiki.openjdk.java.net/display/SKARA/Pull+Request+Commands#PullRequestCommands-/integrate
https://wiki.openjdk.java.net/display/SKARA/Pull+Request+Commands#PullRequestCommands-/integrate
http://openjdk.java.net/bylaws#committer
http://openjdk.java.net/bylaws#committer
https://wiki.openjdk.java.net/display/SKARA/Pull+Request+Commands#PullRequestCommands-/integrate


Mark or clear one or more issues, in addition to the one specified in the pull request title, as solved by this pull request. The default action is to mark an 
issue as being solved. All issues solved by the pull request will be part of the resulting commit message. An issue that has wrongly been marked as solved 
by this pull request can be removed by the command /issue remove <id>. It is allowed to prefix the issue numeric id with the JBS project name, but it is not 
necessary. This command can only be used to modify the list the additional issues, not the main issue defined in the pull request title.

Examples

/issue JDK-4567890
/solves JDK-456789
/issue add JDK-4567890
/issue add 4567890
/issue add 1234567,4567890
/issue remove JDK-4567890

/summary

Syntax

/summary [<text>]

Description

Add a summary section to the resulting commit message of the pull request. For details on the commit message syntax, see . A summary JEP 357
command alone without any text will remove an existing summary. Only use this command to add an additional summary message to a commit. It should 
not be used to add issues or reviewer attributions as those are handled separately and automatically.

Examples

/summary This is a one-line summary
/summary
This is a multi-line summary.
You can add as many lines as you like.
/summary
This is a multi-line, multi-paragraph summary.
You can have as many lines and as many paragraphs as you like.

This is the first line second paragraph,
and this is the second line in the second paragraph.
/summary

/contributor

Syntax

/contributor (add|remove) [@user | openjdk-user | Full Name <email@address>]

Description

Adds or removes a user as a contributor to this pull request. A contributor can be specified either by their GitHub username (e.g. @openjdk-bot), their 
OpenJDK username (e.g. duke) or via a full name and email combination (e.g. J. Duke <duke@openjdk.org>). Github and OpenJDK usernames can only 
be used for users in the OpenJDK . For other contributors you need to supply the full name and email address. A contributor that has incorrectly census
been listed as a contributor can be unlisted by issuing the command . The contributors will be included in the final commit  /contributor remove <id>
message for the pull request. For full details on the commit message syntax see .JEP 357

Examples

/contributor add ehelin
/contributor add @edvbld
/contributor add J. Duke <duke@openjdk.org>
/contributor remove @edvbld
/contributor remove rwestberg
/contributor remove J. Duke <duke@openjdk.org>

/csr

Syntax

/csr [needed|unneeded]

https://openjdk.java.net/jeps/357
https://openjdk.java.net/census
https://openjdk.java.net/jeps/357


Description

Requires that the pull requested has a  issue associated  that the  issue has a   request associated with it  that the  request is JBS and JBS CSR and CSR
approved   the pull request can be integrated.before

Examples

/csr needed
/csr unneeded
/csr

/jep

Syntax

/jep [<issue-id>|JEP-<jep-id>|jep-<jep-id>|unneeded]

Description

Declares that this pull request is part of a . The linked JEP needs to be targeted before the pull request can be integrated. The JDK Enhancement Proposal
command can be issued by the pull request author or a reviewer.

Examples

/jep JDK-1234567
/jep JEP-123
/jep unneeded

/reviewer

Syntax

/reviewer (credit|remove) <username>[,<username>,...]

Description

Give additional users credit for reviewing a pull request. The usernames can either be a username of the source code hosting provider (e.g. a GitHub 
username) or an OpenJDK username. Note that not all OpenJDK projects allows the pull request author to credit additional reviewers. A reviewer credited 
via  will not count as a verified reviewer and some OpenJDK projects do not count unverified reviewers as enough for integration. A /reviewer credit
reviewer can be removed by issuing the  command./reviewer remove

Examples

/reviewer credit @edvbld
/reviewer credit ehelin
/reviewer remove ehelin

/reviewers

Syntax

/reviewers N ][role

Description

Require that at least  users with given  (defaults to ) review the pull request before it can be integrated. The requirements are in to N role Author addition 
the ones specified by the  file. For example, if the  file requires 1 , then issuing the command "/reviewers 2" .jcheck/conf .jcheck/conf Reviewer
means that 1  and 1  is required to integrate the pull request. Any additional invocations of this command completely supersedes any Reviewer Author
previous invocations.

Examples

/reviewers 2
/reviewers 3 reviewer

https://bugs.openjdk.java.net
https://bugs.openjdk.java.net
https://wiki.openjdk.java.net/display/csr
https://wiki.openjdk.java.net/display/csr
http://openjdk.java.net/jeps/1
https://openjdk.java.net/bylaws#author
https://openjdk.java.net/bylaws#reviewer
https://openjdk.java.net/bylaws#reviewer
https://openjdk.java.net/bylaws#author


/label

Syntax

/label [add|remove] <label>[,<label>,...]

Alias

/cc

Description

Adds or removes labels on the pull request. If no action is specified, then the action defaults to "add". Labels have the same name as the development 
mailing lists without the -dev suffix, e.g. the label "hotspot" corresponds to the "hotspot-dev" mailing list. The mailing list bridge will send the RFR e-mail 
according to the labels on the pull request. Note that only labels associated with mailing lists can be controlled with this command and not Skara specific 
labels which are controlled by the bots or other specific commands (e.g. clean, rfr).

Examples

/label add hotspot
/label remove build,core-libs
/label client
/cc hotspot-gc hotspot-runtime
/cc core-libs

/clean

Syntax

/clean

Description

Marks a backport pull request as clean. Skara will attempt to automatically determine if a backport pull request is a clean backport, but sometimes this 
automatic check fails even if the pull request could be considered clean.

/open

Syntax

/open

Description

If a pull request is automatically closed due to inactivity, this command can be used to re-open it.

/backport

Syntax

/backport <repository> [<branch>]

/backport disable <repository> [<branch>] 

Description

/backport used in  pull requestopen

When used in an  pull request, the /backport command adds a  label to the PR. After the PR is integrated, the bot will open Backport=repo:branch
create the backport branch and provides a link for creating the backport. To cancel the backport, the user can use  command to /backport disable
remove the label before the PR is integrated.

Note: /backport disable can  be used in open pull requests.only

/backport used in  pull request. integrated



Applies the commit this pull request resulted in onto the given branch in the given repository and then shows to a link to create a pull request with the 
changes. The branch is optional and defaults to the  branch. If the commit does not apply then a message is shown describing the files containing master
conflicts. See  .Backports

If the target repository is configured to support , it's possible to do this with the backport command by supplying the appropriate dependent pull requests pr
 branch. /X

Examples

/backport jdk16u
/backport jfx jfx14
/backport jdk17u-dev pr/4711

/help

Syntax

/help

Description

Shows help for all pull request commands.

Examples

/help

https://wiki.openjdk.org/display/SKARA/Backports
https://wiki.openjdk.org/display/SKARA/Skara#Skara-Dependentpullrequests

	Pull Request Commands

