
Dynamic Code Evolution for the Java HotSpotTM Virtual

Machine

Thomas Wuerthinger

April 1, 2009

Contents

1 Introduction 1

2 Algorithm 2
2.1 Loading the New Classes . 2
2.2 Updating the Data Structures and Pointers . 3
2.3 Logical Problem with Structural Changes . 5
2.4 Modifications of the VM . 5

3 Tests 6
3.1 Running Tests . 6
3.2 Class Redefinition Utility . 6

1 Introduction

This document is a technical description of the prototype implementation of dynamic code evolution for
the Java HotSpotTM Virtual Machine. It explains the basic concepts and contains pointers to the source
code in form of method and class references. It also contains instructions on how to execute the unit
tests.

In contrast to the current implementation in the Java HotSpotTM Virtual Machine, this approach tries
to support all possible types of dynamic code evolution and is not limited to swapping method bodies.
The code is currently in prototype state. Gray boxes in this document indicate things that are still on
the TODO list.

Figure 1: Redefining D and B. Figure 2: Find all affected classes.

1

2 Algorithm

2.1 Loading the New Classes

Receive redefinition command. A class redefinition command is always given for a set of classes.
Those classes must be already loaded in the VM . Logically they need to be replaced in an atomar
operation, as it could lead to an invalid type system when only part of the new classes are redefined.
In the current implementation, there must not be any user thread running while the class redefinition
is performed. Therefore, we suspend all threads that are not agent threads, and resume them after
the class redefinition is completed (see method JvmtiEnv::RetransformClasses).

Find all affected classes. Redefining a class can have effects on its subtypes. Therefore, we find all
classes that are possibly affected by the class redefinition. Figure 1 introduces an example class
hierarchy. When redefining the classes, it is identified that C is possibly affected by the redefinition
as shown in Figure 2 (see class VM RedefineClasses::FindAffectedKlassesClosure).

Sort the classes topologically. The full list of affected classes is now sorted topologically such that a
super class is always at an earlier position than its subclass (see Figure 3). This is necessary, because
we need to ensure that a super class is always redefined before a subclass. This ensures that the new
version of the subclass can be loaded with respect to the new version of the super class. The class
that does the topological sorting is (see class VM RedefineClasses::TopologicalClassSorting).

The subclass relationships in the new version of the class hierarchy can differ from those in the old
class hierarchy. It could be the case that in the old version A is a subclass of B, but in the new
version B is a subclass of A. We need to ensure that the topological sorting is based on the new
class hierarchy. For this purpose, we preparse the new class bytes just to find out about the super
types of a class (see method ClassFileParser::findSuperSymbols).

Build side universe. Now we know which classes to redefine in which order. The new classes are loaded
such that they coexist with the old classes (see Figure 4). We update entries in the system dictionary
to point to the new class (see method Dictionary::update klass). For classes not redefined, but
only affected by redefinition, we load the same byte codes again to get a duplicated version of the
class (see method VM RedefineClasses::find class bytes). The different versions of a class are
double linked. One can retrieve the old version of a class (see method Klass::old version) or the
new version (see method Klass::new version).

TODO: It is planned to add verification code after loading all classes. This
code needs to check whether there could be inconstencies as execution proceeds
(e.g. deleted method is called, deleted field is accessed, static type / dynamic
type relationship is violated).

Figure 3: Topological order. Figure 4: Building side universe.

2

2.2 Updating the Data Structures and Pointers

Flush dependent code Currently all compiled methods are deoptimized (see method VM Redefine-
Classes::flush dependent code).

TODO: Add a system that allows to decide which methods need to be de-
optimized. For this purpose, we need to know all methods that call a certain
method or access a certain field. An intermediate step could be to at least
deoptimize only methods that depend on a redefined class.

Update constant pool cache entries. We iterate over all classes to update their constant pool cache
(see method VM RedefineClasses::adjust cpool cache). We clear all field entries (see method
constantPoolCacheOopDesc::adjust entries) and adjust method entries. For method entries we
either change the pointer to the method or adjust the virtual table index (see method ConstantPool-
CacheEntry::adjust method entry).

TODO: Improve performance by only updating those field entries that are
affected by redefinition. Do not clear fields, but adjust the field offset.

TODO: Improve performance by providing the method with a more efficient
data structure for performing a method (or field) lookup (e.g. a hash table of
method oops). Additinally, the entries should be adjusted only once and not
for each class.

Figure 5: Swap pointers (B, B’).

Swap pointers. In a mark and compact garbage collection run, we change pointers to the old class to
point to the new class. The pointer replacements are registered before the GC run (see method
Universe::add oop replacement). Figure 5 shows the steps performed in order to swap the point-
ers. In the adjust pointer phase, the pointer of b to B would usually be adjusted to the new location
of B after the garbage collection. We adjust it to the new location of B’ such that after garbage
collection b points to B’.

3

We do not adjust all pointers, as we want to keep certain pointers pointing to the old class (e.g.
pointers from an old class to another old class). Therefore there is one version of adjusting pointers
that keeps them (see method MarkSweep::adjust pointer no replacement) and one that swaps
them (see method MarkSweep::adjust pointer).

TODO: Use a better data structure for saving the pairs that should be swapped
(e.g. an oop hashtable). Currently a linear scan over all saved pairs is necessary
at each pointer adjustment.

Figure 6: Matching fields of old and new version.

Figure 7: Garbage collection run with increased object sizes.

Update instance fields. When the fields of a class change, we need to updated the instances of a class.
This is done during the same garbage collection run that swaps the class pointers. There is a simple
strategy for perfoming the update: Generally all new fields are initialized to zero. Only when there
is a field with the same name and signature in the old class, the field value is copied from the old
version of the object. Figure 6 illustrates this. There is a method to calculate the field matching
(see method instanceKlass::do fields evolution). During garbage collection, we apply the
algorithm to each object (see method MarkSweep::update fields).

4

TODO: Cache the field matching such that subsequent calls to the method do
not have to scan over all fields. Currently this scan is performed for each object
instance, while it has to be performed only once per redefined class. There is
a placeholder that should store the information (see class CodeEvolution).

Rescue big objects As objects can get bigger (e.g. when a field is added to a class), we need to rescue
objects during the compact phase of the garbage collector. Otherwise objects would be overwritten
by other objects. Figure 7 shows how this is handled. In the example, the size of a was increased
such that in the compact phase, the next object b would be overwritten. We copy a to a side
buffer (see method CompactibleSpace::rescue) and copy it back after the garbage collection run
finished.

TODO: Currently this can mean in the worst case, that the whole heap needs
to be rescued. When the rescued objects are later copied to the end of the
heap, the other objects can move further in front. This would decrease the
probability for later objects to need a rescue too and also gives a better worst
case scenario.

Figure 8: Problems with structural changes.

2.3 Logical Problem with Structural Changes

Figure 8 shows a problem that can occur, when arbitrary changes are allowed. The Java statement schon
on the left is correct in the old version of the class hierarchy. In the new hierarchy the classes A and B
are no longer related, but the variable a will still contain a reference to an instance of class B.

TODO: Find a solution such that the virtual machine does react appropriately.
One possibility could be to disallow the class redefinition in this case. A second
possibility could be to set all such variables to null.

2.4 Modifications of the VM

This section describes modifications in the VM that might have an effect on normal execution.

Constant Pool Cache Modifications When creating an entry for a virtual method call, usually only
the virtual table index is stored (see method ConstantPoolCacheEntry::set method). We changed
this such that also a reference to the statically known method is stored. This is necessary to be
able to update virtual table indices later on.

5

Garbage Collector Modifications When adjusting pointers, we need to check, whether the adjusted
pointer is one that needs to be swapped with another one. A simple check is necessary even, when
no pointers are swapped (see method MarkSweep::adjust pointer).

Figure 9: Levels of dynamic code evolution.

3 Tests

There exist different levels of unit tests as shown in Figure 9. The base level contains only tests that do
not change any class signature, but only swap method bodies (see class BodyTestSuite). The next level
modifies only the methods of a class (see class MethodTestSuite). The third level allows also modifica-
tions to the fields, but does now allow changes to the super types of a class (see class FieldTestSuite).
The final level allows arbitrary changes (see class StructuralTestSuite).

3.1 Running Tests

To run the tests, the following command should be executed:

java
-classpath .;%JUNIT%/junit-4.5.jar;%BCEL%/bcel-5.2.jar;%JAVA_HOME%/lib/tools.jar;

../../../HotSwapTool/dist/HotSwapTool.jar
-Xdebug
-Xrunjdwp:transport=dt_socket,server=y,address=4000,suspend=n
at.ssw.hotswap.test.Main

The working directory should be the subdirectory hotswaptest/HotSwapTests/build/classes of
the hotspot sources. The variables JUNIT, BCEL and JAVA HOME must be set accordingly. The Java debug
agent must be started on port 4000 as this is currently the port that the class redefinition utility tries to
connect to.

3.2 Class Redefinition Utility

There is a utility for redefining classes (see class HotSwapTool). This class can be used to redefine all
inner classes of a given outer class to a certain version number. The version number must be encoded
in the class name with three preceding underscores (e.g. A 2 for class A version 2). If a class name
does not contain the three preceding underscores, the class is treated as version 0. Now a call to method
HotSwapTool.toVersion(Class, int)with a reference to the outer class and a version number, redefines
all inner classes to a certain number. Byte code rewriting is used to remove the encoded version number
in the class files such that A and A 2 are really treated as the same classes.

6

