
Table	
  of	
  Contents	
  

Overview	
  ................................................................................................................................	
  1	
  

Generic	
  Components	
  ..............................................................................................................	
  2	
  
Glass	
  Integration	
  .........................................................................................................................................................................	
  2	
  
Window	
  Management	
  ..............................................................................................................................................................	
  2	
  
Input	
  Device	
  Capabilities	
  ........................................................................................................................................................	
  2	
  
Input	
  .................................................................................................................................................................................................	
  2	
  
Platform	
  ..........................................................................................................................................................................................	
  3	
  

Generic	
  Linux	
  Port	
  ..................................................................................................................	
  4	
  
Native	
  Interfaces	
  ........................................................................................................................................................................	
  4	
  
Implementations	
  ........................................................................................................................................................................	
  4	
  
Input	
  .................................................................................................................................................................................................	
  5	
  

OMAP	
  Port	
  .............................................................................................................................	
  6	
  

MX6	
  Port	
  ................................................................................................................................	
  7	
  

X11	
  Port	
  .................................................................................................................................	
  7	
  

OMAPX11	
  Port	
  .......................................................................................................................	
  7	
  

Headless	
  Port	
  .........................................................................................................................	
  8	
  

Native	
  interfaces	
  ....................................................................................................................	
  8	
  
	
  
 

Overview	
  
Monocle is a proposed rewrite of Lens, the Glass implementation for systems that do not have an 
underlying window manager. Unlike Lens, in which most of the work is done in C, Monocle will 
be almost all Java code. Where required, interactions with C code will be through simple Java-C 
bindings where the logic is in Java and only the low-level system or library call is in C. The 
goals of Monocle are: 

• Functional and quality parity with Lens on all platforms: Embedded Linux/ARM, 
Android and headless  

• Simplify the process of porting to a new platform. 
• Improve maintainabiity and debuggability of the embedded ports. Where possible, 

simplify the code.  
• Pluggability of Linux input device handlers 

Like Lens, Monocle assumes it has full control of the screen and does not have to cooperate with 
other graphical applications. It does not rely on an underlying window system. 



Generic	
  Components	
  

Glass	
  Integration	
  
The classes named Monocle* integrate with class. So MonocleApplication, MonocleWindow 
and MonocleView extends the Glass classes Application, Window and View. 
All code running at this level is on the application thread. 

Window	
  Management	
  
Monocle windows do not exist at a native level. Window state is held in MonocleWindow, while 
MonocleWindowManager maintains the Z-ordering of the window stack and assigns ID numbers 
to MonocleWindows. 

 
All window management code runs on the application thread. 

Input	
  Device	
  Capabilities	
  
An InputDevice represents a single device that can generate input events. An InputDevice can 
report on its input capabilities. For example, it can declare itself as a multitouch screen or as a 5-
way keypad. InputDevices are registered with an InputDeviceRegistry; MonocleApplication 
listens on changes to the InputDeviceRegistry to get notification on what classes of devices are 
attached.	
  	
  

	
  
Implementations of InputDeviceRegistry are also responsible for making sure input devices are 
recognized and their events delivered. 
All generic input device code runs on the application thread. Platform-specific 
InputDeviceRegistry implementations can contain code that runs on other threads.  

Input	
  
Three input handler classes process input of different kinds: MouseInput, TouchInput and 
KeyInput. Each of these maintains its own state in an input state class: MouseState, TouchState 
or KeyState. When the one of the input handler is notified of a change to the input state it 
generates events accordingly based on the current state of the window stack and input focus. 
Low-level input classes do not communicate directly with the window stack. 
Each input handler contains a single input state object. When the input handler is notified of an 

	
   
MonocleWindow MonocleWindowManager 

Window 

	
   
InputDevice InputDeviceRegistry 



input state change, it receives a state object containing the new state. The input handler does not 
store this external state object, but copies its contents into its own records. This helps us to 
minimize object creation during event processing. 

 
All generic input code runs on the application thread. 

Platform	
  
The platform-specific components are: NativePlatform, NativeScreen, NativeCursor and 
InputDeviceRegistry. 
NativePlatform is instantiated by NativePlatformFactory. NativePlatformFactory looks at the 
system property monocle.platform to get an ordered list of factory classes to attempt to use. 
NativePlatformFactory then instantiates these factory classes, querying each in turn whether it 
can support the current platform it is running on. When a matching NativePlatformFactory is 
found, its corresponding NativeFactory will be created. 
NativePlatform provides a single-threaded java.util.concurrent.ExecutorService. This 
ExecutorService is the application thread. 
NativeScreen is instantiated by the NativePlatform. NativeScreen reports on the physical 
characteristics of the screen. It is possible that this class will be used by Prism as well; in this 
case the class will have to be thread-safe. 
NativeCursor is instantiated by the NativePlatform. NativeCursor is responsible for updating the 
visible cursor state, using a platform-specific hardware cursor where possible. NullCursor is an 
empty implementation of this that does not display a cursor. 

 
NativePlatform attempts to determine the best platform to use. Use of a specific platform can be 
forced by setting the system property monocle.platform to one or more of the following values 
in a comma-separated list: 

MouseInput 

TouchInput 

KeyInput 

MouseState 

TouchState 

KeyState 

MonocleWindowManager 

NativePlatformFactory NativePlatform 

NativeScreen 

NativeCursor 

InputDeviceRegistry 

ExecutorService 



Linux – the generic Linux port, using low-level input device nodes for input and no hardware 
cursor  

OMAP – for the BeagleBoard xM using EGL/framebuffer with Linux device input and a 
hardware cursor  

MX6 – for the Freescale i.MX6 using EGL/framebuffer with Linux device input and a 
hardware cursor  

OMAPX11 – for the BeagleBoard xM using EGL/X11 with Linux device input and a hardware 
cursor  

X11 – for generic Linux/X11 platforms, using X11 for input and cursor. 
Headless – for when you want to run with neither input or output 

Other platforms that are not implemented yet but should fit into this system include: Android, 
Headless, Dispman and MX6. 

Generic	
  Linux	
  Port	
  

Native	
  Interfaces	
  
Most of the interaction between the Linux port of Monocle and the OS level is using the pseudo-
filesystem under /sys. This is accessed using utility methods in the class SysFS. This is sufficient 
to read screen and input device characteristics and to request notification on what input devices 
are attached. 
The Udev class is an interface to the Linux udev monitor to get notification when devices are 
attached and removed from the system. This requires some C code, since Java does not have an 
API for connecting to Unix domain sockets.  
it might be necessary to add another native interface to use ioctl calls to read absolute axis range 
data for touch screens. This information does not seem to be available in sysfs. 

Implementations	
  

• FBDevScreen reads screen data from the framebuffer device /dev/fb0.  
• No cursor implementation is provided for the generic port, since there is no usable 

standard for hardware cursors on Linux.  
• LinuxInputDeviceRegistry receives hot plug notifications of input device addition and 

removal and sets up input event processors that work with the generic Monocle input 
handlers. 



 

Input	
  
When an input device is detected by Udev, a LinuxInputDevice instance is created for it. The 
LinuxInputDevice reads events from the Linux input node into a ByteBuffer. As soon as any data 
is ready in the ByteBuffer to be processed, a Runnable (actually a singleton EventProcessor) is 
submitted to the application thread to process this data. "Data ready" means that a complete 
event has been received, including the terminating EV_SYN SYN_REPORT. If the 
EventProcessor is already pending execution then it is not resubmitted; the expectation is that 
every time the EventProcessor runs it will process all pending events. 
Each LinuxInputDevice has an implementation of LinuxInputProcessor attached to it. This 
LinuxInputProcessor is called by the EventProcessor on the application thread. The 
LinuxInputProcessor iterates over pending input events and notifies input handlers of input state 
changes. 

 
Note that raw Linux input events are not represented as objects. Instead a single persistent 
ByteBuffer stores a sequence of event records waiting to be processed. Where possible we avoid 
object creating during input processing. This will be particularly important in touch and mouse 
processing where events can be received very quickly. 
Touch processors do a little more work than other input processors. There are three varieties of 
Linux touch processors, corresponding to three kinds of input devices: 

LinuxPlatformFactory LinuxPlatform 

FBDevScreen 

NullCursor 

LinuxInputDeviceRegistry 

ExecutorService NativePlatformFactory NativePlatform 

SysFS 

Udev 

LinuxInputDevice 

LinuxInputProcessor 

LinuxTouchProcessor LinuxMouseProcessor LinuxKeyProcessor 

MouseState TouchState KeyState 

MouseInput TouchInput KeyInput 

KeyMapper 

USKeyMapper 

EventProcessor 

ByteBuffer 



• LinuxSimpleTouchProcessor – for device drivers that only support a single touch point 
• LinuxStatelessMultiTouchProcessor – for device drivers that send all their current state 

on each event. A stateless driver will send the position of all touch points before every 
call to EV_SYN, even if some of these points have not changed. 

• LinuxStatefulMultiTouchProcessor – for device drivers that send incremental state and 
can leave out information in events if that information has not changed. 

Each touch processor manages a TouchState which it updates according to the events it receives. 
However the touch processor does not communicate with TouchInput directly; instead it uses a 
TouchPipeline containing a series of TouchFilters. Available TouchFilters are: 

• LookaheadTouchFilter – to compress event sequences by filtering out events in a pulse 
that differ in their coordinates but not in the number of touch points or their IDs. 

• AssignIDTouchFilter – to assign touch IDs to points, for devices that do not assign IDs 
themselves. 

• SmallMoveTouchFilter – to filter out noise in touch events by requiring a minimum 
move distance between events. 

Before applying touch filters, LinuxTouchTransform is used to perform rotate, flip and scale 
operations on the screen coordinates. 

 

 

OMAP	
  Port	
  
The OMAP port is a subclass of the generic Linux port that also provides a hardware cursor on 
OMAP platforms. 

LinuxTouchProcessor 

TouchState LinuxSimpleTouchProcessor 

LinuxStatelessMultiTouchProcesso
r

LinuxStatefulMultiTouchProcessor 

TouchPipeline 

LinuxTouchTransform 

TouchFilter TouchPipeline TouchFilter LookaheadTouchFilter 

AssignTouchIDFilter 

SmallMoveTouchFilter 



 

MX6	
  Port	
  
The	
  MX6	
  port	
  is	
  a	
  subclass of the generic Linux port that also provides a hardware cursor on 
Freescale i.MX6 platforms. In the future it will also handle the unique EGL platform 
configuration required for the i.MX6 platform. 

	
  
Unlike	
  the	
  display	
  overlays	
  used	
  for	
  the	
  hardware	
  cursor	
  on	
  OMAP	
  platforms	
  which	
  can	
  be	
  
controlled	
  entirely	
  using	
  sysfs,	
  the	
  i.MX6	
  cursor	
  needs	
  a	
  number	
  of	
  Linux	
  system	
  calls	
  to	
  
operate.	
  The	
  LinuxSystem	
  class	
  provides	
  a	
  thin	
  wrapper	
  to	
  the	
  C	
  APIs	
  required.	
  

X11	
  Port	
  
The X11 port is a subclass of the generic Linux port that uses EGL/X11 for rendering instead of 
EGL/Framebuffer. It also takes its input from X11 events instead of directly from Linux input 
devices. 

 

OMAPX11	
  Port	
  
The OMAPX11 port is a subclass of the OMAP port that uses EGL/X11 for rendering instead of 
EGL/Framebuffer. Like the OMAP port, it uses Linux input devices for input events and a 
hardware OMAP cursor. 

OMAPPlatformFactory OMAPPlatform 
OMAPScreen 

OMAPCursor 

LinuxInputDeviceRegistry LinuxPlatformFactory LinuxPlatform 

SysFS 

FBDevScreen 

MX6PlatformFactory MX6Platform 

FBDevScreen 

MX6Cursor 

LinuxInputDeviceRegistr
yLinuxPlatformFactory LinuxPlatform 

SysFS 

LinuxSystem 

X11PlatformFactory X11Platform 

NullCursor 

X11InputDeviceRegistry 

X11Screen 

LinuxPlatformFactory LinuxPlatform 

X 



 

Headless	
  Port	
  
The	
  headless	
  port	
  does	
  nothing.	
  It	
  is	
  for	
  when	
  you	
  want	
  to	
  run	
  JavaFX	
  with	
  no	
  graphics,	
  
input	
  or	
  platform	
  dependencies.	
  Rendering	
  still	
  happens,	
  it	
  just	
  doesn’t	
  show	
  up	
  on	
  the	
  
screen.	
  	
  

	
  
The	
  headless	
  port	
  uses	
  the	
  LinuxInputDeviceRegistry	
  implementation	
  of	
  
InputDeviceRegistry.	
  However	
  the	
  headless	
  port	
  does	
  not	
  access	
  any	
  actual	
  Linux	
  devices	
  
or	
  any	
  native	
  APIs	
  at	
  all;	
  it	
  uses	
  the	
  Linux	
  input	
  registry	
  in	
  device	
  simulation	
  mode.	
  This	
  
allows	
  Linux	
  device	
  input	
  to	
  be	
  simulated	
  even	
  on	
  non-­‐Linux	
  platforms.	
  The	
  tests	
  in	
  
tests/system/src/test/java/com/sun/glass/ui/monocle/input	
  make	
  extensive	
  use	
  of	
  this	
  
feature.	
  

Native	
  interfaces	
  
There	
  are	
  a	
  few	
  classes	
  in	
  Monocle	
  that	
  use	
  JNI	
  to	
  access	
  native	
  C	
  APIs:	
  

• C.java	
  provides	
  access	
  to	
  C	
  data	
  structures.	
  This	
  can	
  be	
  used	
  to	
  create	
  objects	
  of	
  type	
  
C.Structure	
  representing	
  native	
  structures	
  and	
  their	
  pointers.	
  Instantiation	
  of	
  a	
  
C.Structure	
  requires	
  the	
  loadLibrary.*	
  permission.	
  

• LinuxSystem.java	
  provides	
  access	
  to	
  Linux	
  APIs.	
  All	
  methods	
  on	
  this	
  class	
  are	
  
instance	
  methods;	
  instantiation	
  of	
  a	
  LinuxSystem	
  requires	
  the	
  loadLibrary.*	
  
permission.	
  Access	
  to	
  LinuxSystem	
  instances	
  must	
  be	
  tightly	
  controlled.	
  

• X.java	
  has	
  static	
  methods	
  providing	
  access	
  to	
  X11	
  APIs,	
  for	
  the	
  
com.sun.glass.ui.monocle.x11	
  package	
  only.	
  

• EGL.java	
  provides	
  access	
  to	
  EGL	
  APIs.	
  
	
  

OMAPX11PlatformFactor
y 

OMAPX11Platfor
m 

OMAPCursor 

X11Screen 

LinuxInputDeviceRegistry 

OMAPPlatformFactory OMAPPlatform 

X 

LinuxPlatformFactory LinuxPlatform 

SysFS 

HeadlessPlatformFactory HeadlessPlatform 

HeadlessScreen 

NullCursor 

InputDeviceRegistry 

NativePlatformFactory NativePlatform 



Daniel	
  Blaukopf,	
  May	
  2014	
  
	
  


